Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
nm decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
5 step » _ step (Expand Search), a step (Expand Search), 2 step (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
nm decrease » _ decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
5 step » _ step (Expand Search), a step (Expand Search), 2 step (Expand Search)
-
41
Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model
Published 2019“…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. This motor is constructed precisely via controlled radical polymerization and click chemistry and propelled with biocompatible catalase. …”
-
42
Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model
Published 2019“…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. This motor is constructed precisely via controlled radical polymerization and click chemistry and propelled with biocompatible catalase. …”
-
43
Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model
Published 2019“…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. This motor is constructed precisely via controlled radical polymerization and click chemistry and propelled with biocompatible catalase. …”
-
44
Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model
Published 2019“…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. This motor is constructed precisely via controlled radical polymerization and click chemistry and propelled with biocompatible catalase. …”
-
45
Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model
Published 2019“…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. This motor is constructed precisely via controlled radical polymerization and click chemistry and propelled with biocompatible catalase. …”
-
46
Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model
Published 2019“…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. This motor is constructed precisely via controlled radical polymerization and click chemistry and propelled with biocompatible catalase. …”
-
47
Tadpole-like Unimolecular Nanomotor with Sub-100 nm Size Swims in a Tumor Microenvironment Model
Published 2019“…To address this problem, a unimolecular nanomotor based on molecular bottlebrush (MBB) of sub-100 nm size is reported. This motor is constructed precisely via controlled radical polymerization and click chemistry and propelled with biocompatible catalase. …”
-
48
Global Land Use Change Impacts on Soil Nitrogen Availability and Environmental Losses
Published 2025“…Anthropogenic activities, particularly land use change and management practices, alter the global nitrogen (N) cycle. As a central part of the global N cycle, soil N supply from net N mineralization (NNM) and net nitrification (NN) contributes to over 50% of crop N uptake. …”
-
49
-
50
-
51
-
52
-
53
-
54
-
55
-
56
-
57
-
58
-
59
-
60
Data_Sheet_1_Microclimatic Warming Leads to a Decrease in Species and Growth Form Diversity: Insights From a Tropical Alpine Grassland.PDF
Published 2021“…The increase of tussocks and decrease in diversity of species and growth forms due to prolonged modifications in microclimatic temperature might be a step toward shrub-dominated ecosystems. …”