Showing 321 - 340 results of 62,048 for search '(( 50 ((nn decrease) OR (a decrease)) ) OR ( 5 ((nm decrease) OR (we decrease)) ))', query time: 0.96s Refine Results
  1. 321
  2. 322
  3. 323
  4. 324
  5. 325
  6. 326
  7. 327

    Bidirectional Optical Control of Proton Motive Force in Escherichia coli Using Microbial Rhodopsins by Kotaro Nakanishi (3389300)

    Published 2024
    “…Tethered cell experiments revealed that, upon illumination, the torque of the flagellar motor decreased to nearly zero (28 pN nm) with <i>Rm</i>XeR, while it increased to 1170 pN nm with AR3. …”
  8. 328

    Bidirectional Optical Control of Proton Motive Force in Escherichia coli Using Microbial Rhodopsins by Kotaro Nakanishi (3389300)

    Published 2024
    “…Tethered cell experiments revealed that, upon illumination, the torque of the flagellar motor decreased to nearly zero (28 pN nm) with <i>Rm</i>XeR, while it increased to 1170 pN nm with AR3. …”
  9. 329

    Bidirectional Optical Control of Proton Motive Force in Escherichia coli Using Microbial Rhodopsins by Kotaro Nakanishi (3389300)

    Published 2024
    “…Tethered cell experiments revealed that, upon illumination, the torque of the flagellar motor decreased to nearly zero (28 pN nm) with <i>Rm</i>XeR, while it increased to 1170 pN nm with AR3. …”
  10. 330

    Bidirectional Optical Control of Proton Motive Force in Escherichia coli Using Microbial Rhodopsins by Kotaro Nakanishi (3389300)

    Published 2024
    “…Tethered cell experiments revealed that, upon illumination, the torque of the flagellar motor decreased to nearly zero (28 pN nm) with <i>Rm</i>XeR, while it increased to 1170 pN nm with AR3. …”
  11. 331
  12. 332
  13. 333
  14. 334
  15. 335
  16. 336
  17. 337
  18. 338
  19. 339
  20. 340