Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
16841
-
16842
-
16843
-
16844
Structural Optimization and Pharmacological Evaluation of Inhibitors Targeting Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases (DYRK) and CDC-like kinases (CLK) in Glio...
Published 2017“…The most potent inhibitors (IC<sub>50</sub> ≤ 50 nM) significantly decreased viability, clonogenic survival, migration, and invasion of glioblastoma cells. …”
-
16845
-
16846
-
16847
The age distribution of the patients.
Published 2024“…On the XJTU-EC dataset, CM-UNet achieves an excellent segmentation performance, and ECRNet obtains an accuracy of 98.50%, a precision of 99.32% and a sensitivity of 97.67% on the test set, which outperforms other competitive classical models. …”
-
16848
Comparison experiments.
Published 2024“…On the XJTU-EC dataset, CM-UNet achieves an excellent segmentation performance, and ECRNet obtains an accuracy of 98.50%, a precision of 99.32% and a sensitivity of 97.67% on the test set, which outperforms other competitive classical models. …”
-
16849
External validation comparison results.
Published 2024“…On the XJTU-EC dataset, CM-UNet achieves an excellent segmentation performance, and ECRNet obtains an accuracy of 98.50%, a precision of 99.32% and a sensitivity of 97.67% on the test set, which outperforms other competitive classical models. …”
-
16850
Patient characteristics.
Published 2024“…On the XJTU-EC dataset, CM-UNet achieves an excellent segmentation performance, and ECRNet obtains an accuracy of 98.50%, a precision of 99.32% and a sensitivity of 97.67% on the test set, which outperforms other competitive classical models. …”
-
16851
Comparison with baseline methods.
Published 2024“…On the XJTU-EC dataset, CM-UNet achieves an excellent segmentation performance, and ECRNet obtains an accuracy of 98.50%, a precision of 99.32% and a sensitivity of 97.67% on the test set, which outperforms other competitive classical models. …”
-
16852
The details of the channel attention module.
Published 2024“…On the XJTU-EC dataset, CM-UNet achieves an excellent segmentation performance, and ECRNet obtains an accuracy of 98.50%, a precision of 99.32% and a sensitivity of 97.67% on the test set, which outperforms other competitive classical models. …”
-
16853
Ablation experiments.
Published 2024“…On the XJTU-EC dataset, CM-UNet achieves an excellent segmentation performance, and ECRNet obtains an accuracy of 98.50%, a precision of 99.32% and a sensitivity of 97.67% on the test set, which outperforms other competitive classical models. …”
-
16854
Pathological diagnosis.
Published 2024“…On the XJTU-EC dataset, CM-UNet achieves an excellent segmentation performance, and ECRNet obtains an accuracy of 98.50%, a precision of 99.32% and a sensitivity of 97.67% on the test set, which outperforms other competitive classical models. …”
-
16855
The details of ECRNet.
Published 2024“…On the XJTU-EC dataset, CM-UNet achieves an excellent segmentation performance, and ECRNet obtains an accuracy of 98.50%, a precision of 99.32% and a sensitivity of 97.67% on the test set, which outperforms other competitive classical models. …”
-
16856
-
16857
-
16858
-
16859
-
16860