Showing 17,661 - 17,680 results of 74,121 for search '(( 50 ((nn decrease) OR (a decrease)) ) OR ( 5 ((we decrease) OR (mean decrease)) ))', query time: 0.74s Refine Results
  1. 17661
  2. 17662
  3. 17663
  4. 17664

    Data Sheet 1_Unraveling the impact of SARS-CoV-2 mutations on immunity: insights from innate immune recognition to antibody and T cell responses.docx by Rafael Bayarri-Olmos (695469)

    Published 2024
    “…Neutralization by serum immunoglobulins was predominantly mediated by IgG rather than IgA and was markedly impaired against the Delta (5.8-fold decrease) and Omicron variants BA.1 (17.4-fold) and BA.2 (14.2-fold). …”
  5. 17665

    Data_Sheet_1_Carbon 5–60 Years After Fire: Planting Trees Does Not Compensate for Losses in Dead Wood Stores.docx by Alana J. Clason (12880049)

    Published 2022
    “…Projecting growth to 100 years since fire suggests we may see increasing divergence in carbon stores in planted stands over a full fire-return interval, but these differences remain relatively small [mean (sd): 140.8 (19.6) Mg⋅ha<sup>–1</sup> in planted compared to 136.9 (27.5) Mg⋅ha<sup>–1</sup> in not-planted stands], with 1.4 Mg⋅ha<sup>–1</sup> year<sup>–1</sup> sequestered in not-planted compared to 1.5 Mg⋅ha<sup>–1</sup> year<sup>–1</sup> in planted stands. …”
  6. 17666
  7. 17667

    Image1_Immune cell population and cytokine profiling suggest age dependent differences in the response to SARS-CoV-2 infection.pdf by Larraitz Aragon (14604653)

    Published 2023
    “…In this work, to further understand the relationship between host age-related factors, immunosenescence/exhaustion of the immune system and the response to the virus, we characterized immune cell and cytokine responses in 58 COVID-19 patients admitted to the hospital and 40 healthy controls of different age ranges. …”
  8. 17668
  9. 17669
  10. 17670

    Image5_Clinical Efficacy and Safety of Different Doses of Sildenafil in the Treatment of Persistent Pulmonary Hypertension of the Newborn: A Network Meta-analysis.TIF by Linli Sun (11475766)

    Published 2021
    “…The network meta-analysis revealed that 1.5 mg/kg of sildenafil led to a significant decrease in pulmonary artery systolic pressure (PASP) compared with 0.3 and 0.6 mg/kg (p < 0.05); 1.5 mg/kg was better than 0.3, 0.5, and 1.0 mg/kg at increasing the partial pressure of oxygen (PaO<sub>2</sub>) (p < 0.05); 1.5 mg/kg was better than 0.5, 0.6 and 1.0 mg/kg at reducing the partial pressure of carbon dioxide (PaCO<sub>2</sub>) (p < 0.05); and 1.2 mg/kg was better than 0.3, 0.5 and 1.0 mg/kg at increasing the arterial oxygen saturation (SaO<sub>2</sub>) (p < 0.05). …”
  11. 17671
  12. 17672
  13. 17673

    Metabolome data of the discovery cohort. by Feng Gao (3548)

    Published 2025
    “…The results showed that compared with HC, five metabolites, including DL-stachydrine, D-(+)-pipecolinic acid, furazolidone, L-arginine and 5α-dihydrotestosterone glucuronide were significantly elevated and one metabolite, prenylcysteine, was significantly decreased in the serum of OC, and that the increase in L-arginine and the decrease in prenylcysteine led to impaired urea cycling and a high risk of developing atherosclerosis, respectively. …”
  14. 17674
  15. 17675

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  16. 17676

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  17. 17677

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  18. 17678

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  19. 17679

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”
  20. 17680

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…Complex glycoprotein structures were modeled as cylindrical pillars to analyze condensation rates and active surface areas across a range of <i>p/d</i> ratios (1.0, 1.2, 1.3, 1.7, 2.0, and ∞) and contact angles (θ = 15°, 75°, and 105°, corresponding to <i>f</i> = 3.0, 2.0, and 1.5) to address envelope geometries for a wide variety of viruses. …”