Showing 481 - 500 results of 31,153 for search '(( 50 ((nn decrease) OR (a decrease)) ) OR ( 5 ((wt decrease) OR (teer decrease)) ))', query time: 0.88s Refine Results
  1. 481

    GRIP1<sup>-/-</sup> platelets do not have decreased velocity in ionophore-stimulated blood vessels. by Kristina L. Modjeski (3123072)

    Published 2016
    “…C) GRIP1<sup>-/-</sup> platelets do not have decreased velocity in an ionophore-stimulated mesenteric vessel (N = 4 ± S.E.M; *P < 0.05 by students T-test GRIP1<sup>-/-</sup> vs WT). …”
  2. 482
  3. 483
  4. 484
  5. 485

    Osr1 heterozygous mice experienced decreased bile acid synthesis in the liver. by Ernest C. Lynch (12769954)

    Published 2022
    “…Osr1 male mice had a decreased trend of hepatic bile acid compared to WT mice. …”
  6. 486
  7. 487
  8. 488
  9. 489
  10. 490
  11. 491
  12. 492
  13. 493
  14. 494

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  15. 495

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  16. 496

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  17. 497

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  18. 498

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  19. 499

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  20. 500

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”