Showing 1,321 - 1,340 results of 27,451 for search '(( 50 ((nn decrease) OR (a decrease)) ) OR ( 50 ((mg decrease) OR (we decrease)) ))', query time: 0.90s Refine Results
  1. 1321
  2. 1322
  3. 1323
  4. 1324
  5. 1325
  6. 1326
  7. 1327
  8. 1328
  9. 1329
  10. 1330

    Bacterial strains and plasmids. by Eunsil Choi (8271039)

    Published 2025
    “…Our previous research showed that deleting <i>bipA</i> in <i>Escherichia coli</i> at 20°C leads to a defect in 50S ribosomal assembly and impaired lipopolysaccharide (LPS) synthesis. …”
  11. 1331
  12. 1332

    TMD residues decrease sensitivity. by Ákos Nemecz (356830)

    Published 2017
    “…Glu residues are color coded based upon effect, with residues in red producing a significant decrease in pH<sub>50</sub>, and in yellow, an insignificant or weak effect, whereas the dark purple and magenta for His residues are synonymous to the red of Glu residues. …”
  13. 1333

    Analysis of Research Activity in Gastroenterology: Pancreatitis Is in Real Danger by Andrea Szentesi (3239193)

    Published 2016
    “…<div><p>Objective</p><p>Biomedical investment trends in 2015 show a huge decrease of investment in gastroenterology. …”
  14. 1334
  15. 1335

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  16. 1336

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  17. 1337

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  18. 1338

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  19. 1339

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  20. 1340

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”