Search alternatives:
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
ns decrease » _ decrease (Expand Search), use decreased (Expand Search), ash decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
ns decrease » _ decrease (Expand Search), use decreased (Expand Search), ash decreased (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
321
presentation1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.pptx
Published 2021“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
322
image3_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2020“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
323
presentation1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.pptx
Published 2020“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
324
presentation1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.pptx
Published 2020“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
325
image1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2020“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
326
image1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2021“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
327
image3_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2020“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
328
image1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2020“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
329
image3_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2021“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
330
image2_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2021“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
331
image2_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2020“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
332
Training impact on electrical properties of P3 lumbar MNs. Rin: input resistance. Rheobase: lowest intensity of current injected in MNs to elicit an action potential (AP). AP threshold: voltage measured at the foot of the AP. AP amplitude: measured between the resting membrane potential and the AP peak. AP half width: time spent by the potential > 50% of the AP maximum amplitude. AP rise time: time spent by the potential between 10% and 90% of the AP maximum amplitude. AP half decay time: time spent by the potential between the AP maximum amplitude and the 50% decreasing amplitude. ADP: after-depolarization potential....
Published 2025“…AP half decay time: time spent by the potential between the AP maximum amplitude and the 50% decreasing amplitude. ADP: after-depolarization potential. …”
-
333
Identification, Synthesis, and Biological Evaluations of Potent Inhibitors Targeting Type I Protein Arginine Methyltransferases
Published 2022“…In this study, we first identified several hit compounds against CARM1 by structure-based virtual screening (IC<sub>50</sub> = 35.51 ± 6.68 to 68.70 ± 8.12 μM) and then carried out chemical structural optimizations, leading to six compounds with significantly improved activities targeting CARM1 (IC<sub>50</sub> = 18 ± 2 to 107 ± 6 nM). …”
-
334
Variable included in analysis.
Published 2025“…</p><p>Conclusion</p><p>Close to half of the clients had a VL below 50 copies/ml after case management. …”
-
335
Full dataset of the study.
Published 2025“…</p><p>Conclusion</p><p>Close to half of the clients had a VL below 50 copies/ml after case management. …”
-
336
Discovery of Betulinic Acid Derivatives as Potent Intestinal Farnesoid X Receptor Antagonists to Ameliorate Nonalcoholic Steatohepatitis
Published 2022“…Evidence showed that intestinal FXR antagonism exhibited remarkable metabolic improvements in mice. Herein, we developed a series of betulinic acid derivatives as potent intestinal FXR antagonists, and <b>F6</b> was identified as the most potent one with an IC<sub>50</sub> at 2.1 μM. …”
-
337
Discovery of Betulinic Acid Derivatives as Potent Intestinal Farnesoid X Receptor Antagonists to Ameliorate Nonalcoholic Steatohepatitis
Published 2022“…Evidence showed that intestinal FXR antagonism exhibited remarkable metabolic improvements in mice. Herein, we developed a series of betulinic acid derivatives as potent intestinal FXR antagonists, and <b>F6</b> was identified as the most potent one with an IC<sub>50</sub> at 2.1 μM. …”
-
338
Combination of DNA Damage, Autophagy, and ERK Inhibition: Novel Evodiamine-Inspired Multi-Action Pt(IV) Prodrugs with High-Efficiency and Low-Toxicity Antitumor Activity
Published 2023“…Among them, compound <b>10</b> exhibited a 118-fold enhancement in the IC<sub>50</sub> value compared to cisplatin and low toxicity to normal cells. …”
-
339
Combination of DNA Damage, Autophagy, and ERK Inhibition: Novel Evodiamine-Inspired Multi-Action Pt(IV) Prodrugs with High-Efficiency and Low-Toxicity Antitumor Activity
Published 2023“…Among them, compound <b>10</b> exhibited a 118-fold enhancement in the IC<sub>50</sub> value compared to cisplatin and low toxicity to normal cells. …”
-
340
Combination of DNA Damage, Autophagy, and ERK Inhibition: Novel Evodiamine-Inspired Multi-Action Pt(IV) Prodrugs with High-Efficiency and Low-Toxicity Antitumor Activity
Published 2023“…Among them, compound <b>10</b> exhibited a 118-fold enhancement in the IC<sub>50</sub> value compared to cisplatin and low toxicity to normal cells. …”