Search alternatives:
teer decrease » greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
teer decrease » greater decrease (Expand Search)
nn decrease » _ decrease (Expand Search), gy decreased (Expand Search), b1 decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
12681
Strong Electronic Communication by Direct Metal−Metal Interaction in Molecules with Halide-Bridged Dimolybdenum Pairs
Published 2006“…All three compounds show two reversible one-electron oxidation processes with potential separations (Δ<i>E</i><sub>1/2</sub>) between the two oxidation processes of 540, 499, and 440 mV, respectively. These Δ<i>E</i><sub>1/2</sub> values show that the strength of the electronic coupling between the dimetal units decreases as the Mo<sub>2</sub>···Mo<sub>2</sub> distance increases from <b>1</b> to <b>2</b>, and then to <b>3</b>. …”
-
12682
Longer <i>L</i><sub><i>u</i></sub> significantly decreases and delays the peak of the sound-evoked CAPs of SGN fibers.
Published 2021“…<p>(A) Sound-evoked CAPs of SGN fiber populations with varying unmyelinated segment length <i>L</i><sub><i>u</i></sub> at 70dB SPL, averaged over 50 simulations. Shaded regions correspond to the standard error of the mean and dashed lines correspond to the peaks of each CAP, labeled with the same colors as the CAPs. …”
-
12683
-
12684
-
12685
KAIST low-speed wind tunnel and its components.
Published 2024“…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
-
12686
Scattering efficiency by particle diameter.
Published 2024“…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
-
12687
Relative transmission rate by wavelength.
Published 2024“…Mie scattering, known for effectively decreasing short-wave infrared light, was employed by utilizing water aerosols having a diameter of 1 to 5 μm. …”
-
12688
-
12689
-
12690
-
12691
Failure mode of the sample.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
12692
Positions of AE probes and strain gauges.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
12693
Sampling site.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
12694
Received AE waves.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
12695
Test schemes for soft rocks.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
12696
Failure mode of the sample.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
12697
S1 Table -
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
12698
AE monitoring system.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
12699
MTS-370.25 fatigue resting system.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”
-
12700
Schematic diagram of the AE testing system.
Published 2025“…At the same temperature, shear strength increases at a rate of 5.6 MPa/°C with increasing confining pressure; as freezing temperature decreases, the shear strength increases at 0.34 MPa/°C, and cohesion increases at 0.6 MPa/°C. …”