Search alternatives:
ns decrease » nn decrease (Expand Search), _ decrease (Expand Search), use decreased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
nm decrease » nn decrease (Expand Search), _ decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
ns decrease » nn decrease (Expand Search), _ decrease (Expand Search), use decreased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
nm decrease » nn decrease (Expand Search), _ decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
21
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025Subjects: -
22
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025Subjects: -
23
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025Subjects: -
24
-
25
Downregulation of DOM decreases the abundance of PER and TIM.
Published 2019“…Downregulation of DOM decreased PER levels at CT1-5 and CT17-21. (Scale bar: 50 um.) …”
-
26
Mechlorethamine gel causes epithelium thinning, epithelium-stroma separation, and decreased total stroma cell count.
Published 2025“…*p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001. ns = no significance. N = 3-5. Scale bars = 50 µm. st. = stroma.…”
-
27
-
28
-
29
-
30
Predicting pattern diversity decreases as a function of and .
Published 2025“…<p>For 50 Erdős-Rényi graphs with 30 nodes and 70 edges, we split the results into two columns according to the two initial degenerate unstable eigenmodes + : on the left, (if ), and on the right, (if ). …”
-
31
-
32
-
33
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
34
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
35
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
36
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
37
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
38
-
39
-
40