Showing 141 - 160 results of 31,450 for search '(( 50 ((ppm decrease) OR (nn decrease)) ) OR ((( 10 nm decrease ) OR ( 5 we decrease ))))', query time: 0.70s Refine Results
  1. 141

    Electrochemically Generated Nanobubbles: Invariance of the Current with Respect to Electrode Size and Potential by Esteban D. Gadea (9198918)

    Published 2020
    “…Bubble formation dramatically decreases gas-production rates on nanoelectrodes, by confining the reaction to the electrode boundary. …”
  2. 142

    Presentation_1_Eosinophils Decrease Pulmonary Metastatic Mammary Tumor Growth.pptx by Rachel A. Cederberg (12827564)

    Published 2022
    “…We found that IL5Tg mice exhibit reduced pulmonary metastatic colonization and decreased metastatic tumor burden compared to wild-type (WT) mice or eosinophil-deficient mice. …”
  3. 143

    Regional Characteristics in Ultradeep MXene Slit Nanopores: Insights from Molecular Dynamics Simulation by Kaiqing Sun (18715965)

    Published 2025
    “…Dominated by the mixed region, the total energy variation of the electrode decreases as the interlayer spacing decreases, with energy changes of 8526.52, 7443.52, and 6640.99 kJ·mol<sup>–1</sup> at interlayer spacings of 1.2, 1.0, and 0.8 nm, respectively, representing reductions of approximately 12.7 and 22.1% compared to 1.2 nm. …”
  4. 144

    Regional Characteristics in Ultradeep MXene Slit Nanopores: Insights from Molecular Dynamics Simulation by Kaiqing Sun (18715965)

    Published 2025
    “…Dominated by the mixed region, the total energy variation of the electrode decreases as the interlayer spacing decreases, with energy changes of 8526.52, 7443.52, and 6640.99 kJ·mol<sup>–1</sup> at interlayer spacings of 1.2, 1.0, and 0.8 nm, respectively, representing reductions of approximately 12.7 and 22.1% compared to 1.2 nm. …”
  5. 145

    Regional Characteristics in Ultradeep MXene Slit Nanopores: Insights from Molecular Dynamics Simulation by Kaiqing Sun (18715965)

    Published 2025
    “…Dominated by the mixed region, the total energy variation of the electrode decreases as the interlayer spacing decreases, with energy changes of 8526.52, 7443.52, and 6640.99 kJ·mol<sup>–1</sup> at interlayer spacings of 1.2, 1.0, and 0.8 nm, respectively, representing reductions of approximately 12.7 and 22.1% compared to 1.2 nm. …”
  6. 146

    <i>ING3</i> knockout decreases pan-H4Ac and BRD4 levels and stimulates HIV-1 transcriptional initiation and elongation upon addition of AZD5582. by Emily Hsieh (377992)

    Published 2023
    “…As quality control, we determined the signal levels of RNA-Pol2-S5p from the CUT&Tag data and confirmed the replicates of the antibody was most highly correlated amongst the RNA-Pol2-S5p replicates (<b><a href="http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1011101#ppat.1011101.s011" target="_blank">S3B Fig</a></b>). …”
  7. 147

    Dynamic Regulation of Proton and Water Transport through an Acylhydrazone-Based Photoresponsive Channel by Paras Wanjari (22259362)

    Published 2025
    “…A similar trend was observed in water transport, where the single-channel permeability of <b>1a</b> increased from 6.5 × 10<sup>6</sup> to 3.5 × 10<sup>7</sup> water molecules/s/channel upon switching from the <i>E</i> to <i>Z</i> isomers, then decreased to 1.8 × 10<sup>7</sup> after reverting to the <i>E</i> conformer. …”
  8. 148
  9. 149
  10. 150
  11. 151

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  12. 152

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  13. 153

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  14. 154

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  15. 155

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  16. 156

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  17. 157

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  18. 158

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  19. 159

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  20. 160

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”