Search alternatives:
teer decrease » greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), use decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
teer decrease » greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), use decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
7481
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7482
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7483
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7484
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7485
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7486
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7487
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7488
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7489
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7490
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7491
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7492
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7493
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7494
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7495
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7496
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7497
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7498
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7499
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”
-
7500
Dynamics of Liquid Transfer from Nanoporous Stamps in High-Resolution Flexographic Printing
Published 2019“…Specifically, we find that the printed ink volume and resulting layer thickness are independent of contact pressure; and that printed layer thickness decreases with retraction speed. …”