Showing 9,261 - 9,280 results of 34,357 for search '(( 50 ((teer decrease) OR (a decrease)) ) OR ( 5 ((point decrease) OR (nn decrease)) ))', query time: 0.93s Refine Results
  1. 9261

    Image_3_DNMT3A R882 Mutations Confer Unique Clinicopathologic Features in MDS Including a High Risk of AML Transformation.tif by Majd Jawad (12157533)

    Published 2022
    “…By data mining with publicly accessible cancer genomics databases and a clinical genomic database from a tertiary medical institution, DNMT3A R882 mutations were found to be enriched in AML (53% of all DNMT3A mutations) but decreased in frequency in clonal hematopoiesis of indeterminate potential (CHIP) (10.6%) or other myeloid neoplasms including MDS (27%) (p<.001). …”
  2. 9262

    Image_1_DNMT3A R882 Mutations Confer Unique Clinicopathologic Features in MDS Including a High Risk of AML Transformation.tif by Majd Jawad (12157533)

    Published 2022
    “…By data mining with publicly accessible cancer genomics databases and a clinical genomic database from a tertiary medical institution, DNMT3A R882 mutations were found to be enriched in AML (53% of all DNMT3A mutations) but decreased in frequency in clonal hematopoiesis of indeterminate potential (CHIP) (10.6%) or other myeloid neoplasms including MDS (27%) (p<.001). …”
  3. 9263

    Crystal Structure of YbCu<sub>6</sub>In<sub>6</sub> and Mixed Valence Behavior of Yb in YbCu<sub>6–<i>x</i></sub>In<sub>6+<i>x</i></sub> (<i>x</i> = 0, 1, and 2) Solid Solution by Udumula Subbarao (1431364)

    Published 2016
    “…A deviation in inverse susceptibility data at 200 K suggests a valence transition from Yb<sup>2+</sup> to Yb<sup>3+</sup> as the temperature decreases. …”
  4. 9264

    Image_2_DNMT3A R882 Mutations Confer Unique Clinicopathologic Features in MDS Including a High Risk of AML Transformation.tif by Majd Jawad (12157533)

    Published 2022
    “…By data mining with publicly accessible cancer genomics databases and a clinical genomic database from a tertiary medical institution, DNMT3A R882 mutations were found to be enriched in AML (53% of all DNMT3A mutations) but decreased in frequency in clonal hematopoiesis of indeterminate potential (CHIP) (10.6%) or other myeloid neoplasms including MDS (27%) (p<.001). …”
  5. 9265

    Table_2_DNMT3A R882 Mutations Confer Unique Clinicopathologic Features in MDS Including a High Risk of AML Transformation.docx by Majd Jawad (12157533)

    Published 2022
    “…By data mining with publicly accessible cancer genomics databases and a clinical genomic database from a tertiary medical institution, DNMT3A R882 mutations were found to be enriched in AML (53% of all DNMT3A mutations) but decreased in frequency in clonal hematopoiesis of indeterminate potential (CHIP) (10.6%) or other myeloid neoplasms including MDS (27%) (p<.001). …”
  6. 9266

    Table_1_DNMT3A R882 Mutations Confer Unique Clinicopathologic Features in MDS Including a High Risk of AML Transformation.docx by Majd Jawad (12157533)

    Published 2022
    “…By data mining with publicly accessible cancer genomics databases and a clinical genomic database from a tertiary medical institution, DNMT3A R882 mutations were found to be enriched in AML (53% of all DNMT3A mutations) but decreased in frequency in clonal hematopoiesis of indeterminate potential (CHIP) (10.6%) or other myeloid neoplasms including MDS (27%) (p<.001). …”
  7. 9267
  8. 9268
  9. 9269
  10. 9270
  11. 9271
  12. 9272

    Image_2_The P2X7 Receptor 489C>T Gain of Function Polymorphism Favors HHV-6A Infection and Associates With Female Idiopathic Infertility.tif by Anna Pegoraro (8213589)

    Published 2020
    “…The P2X7R 489C>T polymorphism correlated with HHV-6A infection also in a cohort of 50 women affected with idiopathic infertility, a condition previously shown to correlate with HHV-6A infection. …”
  13. 9273
  14. 9274
  15. 9275
  16. 9276
  17. 9277
  18. 9278

    Charge Distribution in Cationic Molybdenum Imido Alkylidene <i>N</i>‑Heterocyclic Carbene Complexes: A Combined X‑ray, XAS, XES, DFT, Mössbauer, and Catalysis Approach by Mathis Benedikter (9726148)

    Published 2020
    “…The binding situation in the corresponding cationic complexes Mo­(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­(CHCMe<sub>2</sub>Ph)­(NHC)­(OC­(CF<sub>3</sub>)<sub>3</sub>)<sup>+</sup> B­(Ar<sup>F</sup>)<sub>4</sub><sup>–</sup> (NHC = IMes (<b>1</b>), IMesCl<sub>2</sub> (<b>2</b>), IMesMe<sub>2</sub> (<b>3</b>), and IMesH<sub>2</sub> (<b>4</b>) was compared to that of the analogous neutral Schrock catalyst Mo­(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­(CHCMe<sub>2</sub>Ph)­((OC­(CF<sub>3</sub>)<sub>3</sub>))<sub>2</sub> (<b>5</b>). Single-crystal X-ray data were used as a starting point for the optimization of the geometries of the catalysts at the PBE0-D3BJ/def2-SVP level of theory; the obtained data were compared to those obtained from X-ray absorption (XAS) and emission spectroscopy (XES). …”
  19. 9279

    Charge Distribution in Cationic Molybdenum Imido Alkylidene <i>N</i>‑Heterocyclic Carbene Complexes: A Combined X‑ray, XAS, XES, DFT, Mössbauer, and Catalysis Approach by Mathis Benedikter (9726148)

    Published 2020
    “…The binding situation in the corresponding cationic complexes Mo­(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­(CHCMe<sub>2</sub>Ph)­(NHC)­(OC­(CF<sub>3</sub>)<sub>3</sub>)<sup>+</sup> B­(Ar<sup>F</sup>)<sub>4</sub><sup>–</sup> (NHC = IMes (<b>1</b>), IMesCl<sub>2</sub> (<b>2</b>), IMesMe<sub>2</sub> (<b>3</b>), and IMesH<sub>2</sub> (<b>4</b>) was compared to that of the analogous neutral Schrock catalyst Mo­(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­(CHCMe<sub>2</sub>Ph)­((OC­(CF<sub>3</sub>)<sub>3</sub>))<sub>2</sub> (<b>5</b>). Single-crystal X-ray data were used as a starting point for the optimization of the geometries of the catalysts at the PBE0-D3BJ/def2-SVP level of theory; the obtained data were compared to those obtained from X-ray absorption (XAS) and emission spectroscopy (XES). …”
  20. 9280

    Charge Distribution in Cationic Molybdenum Imido Alkylidene <i>N</i>‑Heterocyclic Carbene Complexes: A Combined X‑ray, XAS, XES, DFT, Mössbauer, and Catalysis Approach by Mathis Benedikter (9726148)

    Published 2020
    “…The binding situation in the corresponding cationic complexes Mo­(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­(CHCMe<sub>2</sub>Ph)­(NHC)­(OC­(CF<sub>3</sub>)<sub>3</sub>)<sup>+</sup> B­(Ar<sup>F</sup>)<sub>4</sub><sup>–</sup> (NHC = IMes (<b>1</b>), IMesCl<sub>2</sub> (<b>2</b>), IMesMe<sub>2</sub> (<b>3</b>), and IMesH<sub>2</sub> (<b>4</b>) was compared to that of the analogous neutral Schrock catalyst Mo­(<i>N</i>-2,6-Me<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)­(CHCMe<sub>2</sub>Ph)­((OC­(CF<sub>3</sub>)<sub>3</sub>))<sub>2</sub> (<b>5</b>). Single-crystal X-ray data were used as a starting point for the optimization of the geometries of the catalysts at the PBE0-D3BJ/def2-SVP level of theory; the obtained data were compared to those obtained from X-ray absorption (XAS) and emission spectroscopy (XES). …”