Showing 1,321 - 1,340 results of 11,130 for search '(( 50 ((teer decrease) OR (mean decrease)) ) OR ( 5 ((wt decrease) OR (nn decrease)) ))', query time: 0.77s Refine Results
  1. 1321

    STC-NC analysis measures a reduction in the RF center size for both ON and ON-OFF cells during WT development. by Donald R. Cantrell (239233)

    Published 2010
    “…Following standard ANCOVA analysis, the parallel condition was enforced after demonstrating that the slopes of the lines of best fit through the two data sets were not significantly different and that P25 had smaller RF sizes than P18 for WT ON cells ( p = 4×10<sup>−5</sup> in ANCOVA test).…”
  2. 1322

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  3. 1323

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  4. 1324

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  5. 1325

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  6. 1326

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  7. 1327

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  8. 1328
  9. 1329
  10. 1330

    S1 Data - by Jan Willem Koten (17743224)

    Published 2024
    “…We estimated connectivity from a working memory task. The grand mean connectivity of the connectome equaled r = 0.41 (95% CI 0.31–0.50) for the test run and r = 0.40 (95% CI 0.29–0.49) for the retest run. …”
  11. 1331

    Connectivity statistics. by Jan Willem Koten (17743224)

    Published 2024
    “…We estimated connectivity from a working memory task. The grand mean connectivity of the connectome equaled r = 0.41 (95% CI 0.31–0.50) for the test run and r = 0.40 (95% CI 0.29–0.49) for the retest run. …”
  12. 1332
  13. 1333
  14. 1334

    Sex-specific effect of WT1 and GATA4 knockdown on <i>Gata4 E1a</i> and <i>Gata4 E1b</i> isoforms expression. by Lucas J. Rudigier (3938090)

    Published 2017
    “…<i>Gata4-</i> (A) and mismatch <i>vs</i>. <i>Wt1-</i>morpholino (B). Error bars represent S.E.M. from independent biological replicates (n ≥ 5). …”
  15. 1335
  16. 1336
  17. 1337
  18. 1338
  19. 1339
  20. 1340