Search alternatives:
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
wt decrease » _ decrease (Expand Search), nn decrease (Expand Search), awd decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
5 wt » _ wt (Expand Search), 5 ht (Expand Search), i wt (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
wt decrease » _ decrease (Expand Search), nn decrease (Expand Search), awd decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
5 wt » _ wt (Expand Search), 5 ht (Expand Search), i wt (Expand Search)
-
5681
presentation1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.pptx
Published 2020“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
5682
presentation1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.pptx
Published 2020“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
5683
image1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2020“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
5684
image1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2021“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
5685
image3_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2020“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
5686
image1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2020“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
5687
image3_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2021“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
5688
image2_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2021“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
5689
image2_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif
Published 2020“…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
-
5690
-
5691
The effects of clonidine on mean arterial blood pressure, fluid flux and luminal alkalinisation.
Published 2022“…<p>Duodenum was perfused with isotonic saline for 90 min and clonidine was administered from 30 min as a constant i.v. infusion at a dose of 10 or 50 μg kg<sup>-1</sup> h<sup>-1</sup> (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0273208#pone.0273208.g001" target="_blank">Fig 1</a>). …”
-
5692
Standardized mean effect differences between wet-lab experiment and model simulations.
Published 2021“…<p>Hedges’ <i>g</i> standardized mean effect differences were calculated between different groups from our wet-lab experiments and three models (60:40, 50:50, and 30:70) which differed based on the PKC<i>δ</i>:SOM ratio. …”
-
5693
-
5694
-
5695
-
5696
-
5697
-
5698
-
5699
Cytidine-phosphate-guanosine oligodeoxynucleotides in combination with CD40 ligand decrease periodontal inflammation and alveolar bone loss in a TLR9-independent manner
Published 2018“…The silk ligature was tied around the maxillary second molars for 14 days, during which the CpG+CD40L mixture or PBS was injected into palatal gingiva on days 3, 6, and 9. Results: For both WT and TLR9 KO mice, CpG significantly induced B cell proliferation, increased IL-10 mRNA expression and protein secretion of IL-10 but reduced CD1dhiCD5+ B cells population; local injection of CpG+CD40L mixture significantly decreased alveolar bone loss and the number of TRAP-positive cells adjacent to the alveolar bone surface, and significantly increased the gingival mRNA expression of IL-10 and decreased RANKL and IFN-γ mRNA expression. …”
-
5700