Showing 32,021 - 32,032 results of 32,032 for search '(( 50 ((we decrease) OR (((nn decrease) OR (a decrease)))) ) OR ( a step decrease ))', query time: 0.65s Refine Results
  1. 32021

    Table_1_Hypoxia-Ischemia Induced Age-Dependent Gene Transcription Effects at Two Development Stages in the Neonate Mouse Brain.xlsx by Nicolas Dupré (357758)

    Published 2020
    “…This study pointed out age-differences in HI responses kinetics, e.g., a long-lasting inflammatory response at P10 compared to P5. …”
  2. 32022

    Supporting Data for Gradual Not Sudden Change: Multiple Sites of Functional Transition Across the Microvascular Bed by Kira Shaw (4467583)

    Published 2022
    “…<br></div><div><br></div><div>Abstract <br></div><div>In understanding the role of the neurovascular unit as both a biomarker and target for disease interventions, it is vital to appreciate how the function of different components of this unit change along the vascular tree. …”
  3. 32023

    Data_Sheet_1_The Proinflammatory Role of Guanylate-Binding Protein 5 in Inflammatory Bowel Diseases.docx by Yichen Li (200944)

    Published 2022
    “…In addition, GBP5 may upregulate inflammatory reactions through an inflammasome-mediated mechanism. Since GBP5 plays a proinflammatory role at the early steps of the inflammatory cascades of IBD pathogenesis, and is implicated in IBD patients of distinct genetic and environmental backgrounds, targeting GBP5 could be an effective strategy for the management of IBD.…”
  4. 32024

    THE IMPACT OF CLIMATE CHANGE ON THE ADAPTATION OF LOCAL CROP YIELD IN MAYUKWAYUKWA SETTLEMENT OF KAOMA DISTICT IN WESTERN PROVINCE by Chikondi Mbewe (17419309)

    Published 2023
    “…</p><p dir="ltr">The next steps involve addressing decreased rainfall in the Western province, likely attributed to human-induced activities like deforestation. …”
  5. 32025

    Data_Sheet_1_Gradual Not Sudden Change: Multiple Sites of Functional Transition Across the Microvascular Bed.pdf by Kira Shaw (11099383)

    Published 2022
    “…<p>In understanding the role of the neurovascular unit as both a biomarker and target for disease interventions, it is vital to appreciate how the function of different components of this unit change along the vascular tree. …”
  6. 32026

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  7. 32027

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  8. 32028

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  9. 32029

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  10. 32030

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  11. 32031

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. This prediction was confirmed by our fixed-bed experiments, which found a 125% increase in the initial CO<sub>2</sub> absorption rate and a 29% increase in CO<sub>2</sub> uptake after 36 min exposure in 0.7 wt % (1.0 at. %) Li-doped Na<sub>2</sub>CO<sub>3</sub> compared with undoped Na<sub>2</sub>CO<sub>3</sub>.…”
  12. 32032

    Involvement of Abscisic Acid in PSII Photodamage and D1 Protein Turnover for Light-Induced Premature Senescence of Rice Flag Leaves by Fubiao Wang (2994375)

    Published 2016
    “…The <i>psf</i> showed evidently decreased D1 protein amount in the senescent leaves. …”