Showing 4,501 - 4,520 results of 32,032 for search '(( 50 ((we decrease) OR (((nn decrease) OR (a decrease)))) ) OR ( a step decrease ))', query time: 0.98s Refine Results
  1. 4501

    Investigating Autoignition Characteristics of Ammonia/Heptamethylnonane Mixtures Over Wide Pressure Ranges: Rapid Compression Machine Measurements and Kinetic Modeling Study by Yongxiang Zhang (31421)

    Published 2024
    “…For the mixture with the lowest NH<sub>3</sub> energy ratio of 50%, non-Arrhenius-type behavior was observed at a pressure of 20 bar, while it transfers to a monotonic decrease of IDTs with increasing temperature at a pressure of 40 bar. …”
  2. 4502

    Investigating Autoignition Characteristics of Ammonia/Heptamethylnonane Mixtures Over Wide Pressure Ranges: Rapid Compression Machine Measurements and Kinetic Modeling Study by Yongxiang Zhang (31421)

    Published 2024
    “…For the mixture with the lowest NH<sub>3</sub> energy ratio of 50%, non-Arrhenius-type behavior was observed at a pressure of 20 bar, while it transfers to a monotonic decrease of IDTs with increasing temperature at a pressure of 40 bar. …”
  3. 4503

    Investigating Autoignition Characteristics of Ammonia/Heptamethylnonane Mixtures Over Wide Pressure Ranges: Rapid Compression Machine Measurements and Kinetic Modeling Study by Yongxiang Zhang (31421)

    Published 2024
    “…For the mixture with the lowest NH<sub>3</sub> energy ratio of 50%, non-Arrhenius-type behavior was observed at a pressure of 20 bar, while it transfers to a monotonic decrease of IDTs with increasing temperature at a pressure of 40 bar. …”
  4. 4504
  5. 4505
  6. 4506
  7. 4507
  8. 4508
  9. 4509
  10. 4510
  11. 4511
  12. 4512
  13. 4513
  14. 4514
  15. 4515

    Immunofluorescence of select extracellular matrix (ECM) components. by Melissa A. MacIver (12850566)

    Published 2022
    “…<p>Matched sections from traditional histology (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0269571#pone.0269571.g008" target="_blank">Fig 8</a>) were assessed via immunofluorescence for aggrecan, Collagen Type II, and Collagen Type X. …”
  16. 4516

    image2_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif by Xin Zhi (1829224)

    Published 2020
    “…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
  17. 4517

    presentation1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.pptx by Xin Zhi (1829224)

    Published 2021
    “…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
  18. 4518

    image3_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.tif by Xin Zhi (1829224)

    Published 2020
    “…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
  19. 4519

    presentation1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.pptx by Xin Zhi (1829224)

    Published 2020
    “…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”
  20. 4520

    presentation1_Myostatin Promotes Osteoclastogenesis by Regulating Ccdc50 Gene Expression and RANKL-Induced NF-κB and MAPK Pathways.pptx by Xin Zhi (1829224)

    Published 2020
    “…Specifically, myostatin increased the phosphorylation of Smad2, which led to the activation of NF-κB and MAPK pathways to activate osteoclastogenesis. Ccdc50 was identified as a gene whose expression was highly decreased in osteoclastogenesis upon myostatin treatment, and it could inhibit the function of myostatin in osteoclastogenesis by blocking NF-κB and MAPKs pathways. …”