Showing 1 - 20 results of 145,572 for search '(( 50 ((we decrease) OR (026 decrease)) ) OR ((( 10 a decrease ) OR ( 5 nm decrease ))))', query time: 0.85s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12

    Predicting pattern diversity decreases as a function of and . by Selim Haj Ali (21222613)

    Published 2025
    “…<p>For 50 Erdős-Rényi graphs with 30 nodes and 70 edges, we split the results into two columns according to the two initial degenerate unstable eigenmodes  +  : on the left, (if ), and on the right, (if ). …”
  13. 13
  14. 14
  15. 15

    Discovery of the Triazolo[1,5‑<i>a</i>]Pyrimidine-Based Derivative WS-898 as a Highly Efficacious and Orally Bioavailable ABCB1 Inhibitor Capable of Overcoming Multidrug Resistance... by Shuai Wang (109515)

    Published 2021
    “…Targeting P-glycoprotein (ABCB1 or P-gp) has been recognized as a promising strategy to overcome multidrug resistance. Here, we reported our medicinal chemistry efforts that led to the discovery of the triazolo­[1,5-<i>a</i>]­pyrimidine derivative <b>WS-898</b> as a highly effective ABCB1 inhibitor capable of reversing paclitaxel (PTX) resistance in drug-resistant SW620/Ad300, KB-C2, and HEK293/ABCB1 cells (IC<sub>50</sub> = 5.0, 3.67, and 3.68 nM, respectively), more potent than verapamil and zosuquidar. …”
  16. 16

    Discovery of the Triazolo[1,5‑<i>a</i>]Pyrimidine-Based Derivative WS-898 as a Highly Efficacious and Orally Bioavailable ABCB1 Inhibitor Capable of Overcoming Multidrug Resistance... by Shuai Wang (109515)

    Published 2021
    “…Targeting P-glycoprotein (ABCB1 or P-gp) has been recognized as a promising strategy to overcome multidrug resistance. Here, we reported our medicinal chemistry efforts that led to the discovery of the triazolo­[1,5-<i>a</i>]­pyrimidine derivative <b>WS-898</b> as a highly effective ABCB1 inhibitor capable of reversing paclitaxel (PTX) resistance in drug-resistant SW620/Ad300, KB-C2, and HEK293/ABCB1 cells (IC<sub>50</sub> = 5.0, 3.67, and 3.68 nM, respectively), more potent than verapamil and zosuquidar. …”
  17. 17
  18. 18
  19. 19
  20. 20