Showing 18,121 - 18,133 results of 18,133 for search '(( 50 ((we decrease) OR (a decrease)) ) OR ((( 5 step decrease ) OR ( 50 nn decrease ))))', query time: 0.57s Refine Results
  1. 18121
  2. 18122

    Sensitivity analysis of the results of Fig 3, for the high school contact network, w.r.t. graph of persistent contacts. by Simon Mauras (11337066)

    Published 2021
    “…Part (b) is a construction of what we call a <i>best friends</i> graph, constructed in the following two steps: First, each person lists their neighbor by order of decreasing number of contacts, stopping as soon as they reach 25% or their total number of contacts. …”
  3. 18123
  4. 18124
  5. 18125

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. …”
  6. 18126

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. …”
  7. 18127

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. …”
  8. 18128

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. …”
  9. 18129

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. …”
  10. 18130

    Understanding and Improving the Kinetics of Bulk Carbonation on Sodium Carbonate by Tianyi Cai (1511026)

    Published 2020
    “…We find that the kinetics of Na<sub>2</sub>CO<sub>3</sub> bulk carbonation is controlled by the <i>I</i><sub>H</sub><sup>+</sup>/<i>V</i><sub>Na</sub><sup>–</sup> defect pair generation in Na<sub>2</sub>CO<sub>3</sub>; we predict that the kinetics can be enhanced by doping lithium into Na<sub>2</sub>CO<sub>3</sub>, which decreases the defect formation energy by 0.13 eV. …”
  11. 18131
  12. 18132
  13. 18133