Search alternatives:
fold decrease » fold increase (Expand Search), fold increased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
fold decrease » fold increase (Expand Search), fold increased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
12801
-
12802
Design and Synthesis of Novel Epigenetic Inhibitors Targeting Histone Deacetylases, DNA Methyltransferase 1, and Lysine Methyltransferase G9a with <i>In Vivo</i> Efficacy in Multip...
Published 2021“…Concomitant inhibition of key epigenetic pathways involved in silencing tumor suppressor genes has been recognized as a promising strategy for cancer therapy. Herein, we report a first-in-class series of quinoline-based analogues that simultaneously inhibit histone deacetylases (from a low nanomolar range) and DNA methyltransferase-1 (from a mid-nanomolar range, IC<sub>50</sub> < 200 nM). …”
-
12803
Design and Synthesis of Novel Epigenetic Inhibitors Targeting Histone Deacetylases, DNA Methyltransferase 1, and Lysine Methyltransferase G9a with <i>In Vivo</i> Efficacy in Multip...
Published 2021“…Concomitant inhibition of key epigenetic pathways involved in silencing tumor suppressor genes has been recognized as a promising strategy for cancer therapy. Herein, we report a first-in-class series of quinoline-based analogues that simultaneously inhibit histone deacetylases (from a low nanomolar range) and DNA methyltransferase-1 (from a mid-nanomolar range, IC<sub>50</sub> < 200 nM). …”
-
12804
Design and Synthesis of Novel Epigenetic Inhibitors Targeting Histone Deacetylases, DNA Methyltransferase 1, and Lysine Methyltransferase G9a with <i>In Vivo</i> Efficacy in Multip...
Published 2021“…Concomitant inhibition of key epigenetic pathways involved in silencing tumor suppressor genes has been recognized as a promising strategy for cancer therapy. Herein, we report a first-in-class series of quinoline-based analogues that simultaneously inhibit histone deacetylases (from a low nanomolar range) and DNA methyltransferase-1 (from a mid-nanomolar range, IC<sub>50</sub> < 200 nM). …”
-
12805
Design and Synthesis of Novel Epigenetic Inhibitors Targeting Histone Deacetylases, DNA Methyltransferase 1, and Lysine Methyltransferase G9a with <i>In Vivo</i> Efficacy in Multip...
Published 2021“…Concomitant inhibition of key epigenetic pathways involved in silencing tumor suppressor genes has been recognized as a promising strategy for cancer therapy. Herein, we report a first-in-class series of quinoline-based analogues that simultaneously inhibit histone deacetylases (from a low nanomolar range) and DNA methyltransferase-1 (from a mid-nanomolar range, IC<sub>50</sub> < 200 nM). …”
-
12806
-
12807
-
12808
-
12809
-
12810
-
12811
-
12812
-
12813
-
12814
-
12815
-
12816
-
12817
-
12818
<i>Yap (5SA)</i> mRNA-injected embryos exhibit dramatic downregulation of retinal photoreceptor genes.
Published 2014“…<p>(A) The top five GO categories for genes downregulated by over 4.0-fold in <i>yap (5SA)</i>-expressing embryos at 48 hpf as determined by microarray analysis. …”
-
12819
Items.
Published 2023“…<div><p>Epilepsy is a common, serious condition. Fortunately, seizure risk decreases with increasing seizure-free time on antiseizure medications (ASMs). …”
-
12820
Survey feedback.
Published 2023“…<div><p>Epilepsy is a common, serious condition. Fortunately, seizure risk decreases with increasing seizure-free time on antiseizure medications (ASMs). …”