Showing 4,481 - 4,500 results of 43,973 for search '(( 50 ((we decrease) OR (a decrease)) ) OR ( 5 ((nn decrease) OR (mean decrease)) ))', query time: 0.82s Refine Results
  1. 4481

    (A) The proportion of fast MyHC myotubes is decreased in Igf-2 deficient mice (maternal disomy Chromosome 7 - MatDi) at E14 by Deborah Merrick (54928)

    Published 2011
    “…<p><b>Copyright information:</b></p><p>Taken from "A role for Insulin-like growth factor 2 in specification of the fast skeletal muscle fibre"</p><p>http://www.biomedcentral.com/1471-213X/7/65</p><p>BMC Developmental Biology 2007;7():65-65.…”
  2. 4482
  3. 4483

    Discovery of a Trifluoromethoxy Cyclopentanone Benzothiazole Receptor-Interacting Protein Kinase 1 Inhibitor as the Treatment for Alzheimer’s Disease by Yi Sun (118759)

    Published 2022
    “…<b>SZM679</b>, a highly specific RIPK1 inhibitor (<i>K</i><sub>d,RIPK1</sub> = 8.6 nM, <i>K</i><sub>d,RIPK3</sub> > 5000 nM), was developed by our group with superior high antinecroptotic activity (EC<sub>50</sub> = 2 nM), and investigated to completely reverse the tumor necrosis factor-induced systemic inflammatory response syndrome. …”
  4. 4484

    Discovery of a Trifluoromethoxy Cyclopentanone Benzothiazole Receptor-Interacting Protein Kinase 1 Inhibitor as the Treatment for Alzheimer’s Disease by Yi Sun (118759)

    Published 2022
    “…<b>SZM679</b>, a highly specific RIPK1 inhibitor (<i>K</i><sub>d,RIPK1</sub> = 8.6 nM, <i>K</i><sub>d,RIPK3</sub> > 5000 nM), was developed by our group with superior high antinecroptotic activity (EC<sub>50</sub> = 2 nM), and investigated to completely reverse the tumor necrosis factor-induced systemic inflammatory response syndrome. …”
  5. 4485

    Discovery of a Trifluoromethoxy Cyclopentanone Benzothiazole Receptor-Interacting Protein Kinase 1 Inhibitor as the Treatment for Alzheimer’s Disease by Yi Sun (118759)

    Published 2022
    “…<b>SZM679</b>, a highly specific RIPK1 inhibitor (<i>K</i><sub>d,RIPK1</sub> = 8.6 nM, <i>K</i><sub>d,RIPK3</sub> > 5000 nM), was developed by our group with superior high antinecroptotic activity (EC<sub>50</sub> = 2 nM), and investigated to completely reverse the tumor necrosis factor-induced systemic inflammatory response syndrome. …”
  6. 4486

    Discovery of a Trifluoromethoxy Cyclopentanone Benzothiazole Receptor-Interacting Protein Kinase 1 Inhibitor as the Treatment for Alzheimer’s Disease by Yi Sun (118759)

    Published 2022
    “…<b>SZM679</b>, a highly specific RIPK1 inhibitor (<i>K</i><sub>d,RIPK1</sub> = 8.6 nM, <i>K</i><sub>d,RIPK3</sub> > 5000 nM), was developed by our group with superior high antinecroptotic activity (EC<sub>50</sub> = 2 nM), and investigated to completely reverse the tumor necrosis factor-induced systemic inflammatory response syndrome. …”
  7. 4487

    Discovery of a Trifluoromethoxy Cyclopentanone Benzothiazole Receptor-Interacting Protein Kinase 1 Inhibitor as the Treatment for Alzheimer’s Disease by Yi Sun (118759)

    Published 2022
    “…<b>SZM679</b>, a highly specific RIPK1 inhibitor (<i>K</i><sub>d,RIPK1</sub> = 8.6 nM, <i>K</i><sub>d,RIPK3</sub> > 5000 nM), was developed by our group with superior high antinecroptotic activity (EC<sub>50</sub> = 2 nM), and investigated to completely reverse the tumor necrosis factor-induced systemic inflammatory response syndrome. …”
  8. 4488

    Discovery of a Trifluoromethoxy Cyclopentanone Benzothiazole Receptor-Interacting Protein Kinase 1 Inhibitor as the Treatment for Alzheimer’s Disease by Yi Sun (118759)

    Published 2022
    “…<b>SZM679</b>, a highly specific RIPK1 inhibitor (<i>K</i><sub>d,RIPK1</sub> = 8.6 nM, <i>K</i><sub>d,RIPK3</sub> > 5000 nM), was developed by our group with superior high antinecroptotic activity (EC<sub>50</sub> = 2 nM), and investigated to completely reverse the tumor necrosis factor-induced systemic inflammatory response syndrome. …”
  9. 4489

    Methodology. by Scott John (228011)

    Published 2024
    “…Upon binding of lactate YFP and CFP move farther apart, the intensity of YFP fluorescence decreases while that of CFP increases. This leads to a decrease in the YFP/CFP FRET ratio. …”
  10. 4490
  11. 4491

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  12. 4492

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  13. 4493

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  14. 4494

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  15. 4495

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  16. 4496

    Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts by Stefan Wiese (1626535)

    Published 2009
    “…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
  17. 4497
  18. 4498
  19. 4499
  20. 4500