Showing 13,201 - 13,220 results of 113,423 for search '(( 50 ((we decrease) OR (a decrease)) ) OR ( 5 ((we decrease) OR (a decrease)) ))', query time: 1.88s Refine Results
  1. 13201

    Table_2_DNMT3A R882 Mutations Confer Unique Clinicopathologic Features in MDS Including a High Risk of AML Transformation.docx by Majd Jawad (12157533)

    Published 2022
    “…Next with the largest cohort of patients with DNMT3A R882 mutant MDS known to date from multiple institutions, DNMT3A R882 mutant MDS cases were shown to have more severe leukopenia, enriched SRSF2 and IDH2 mutations, increased cases with excess blasts (47% vs 22.5%, p=.004), markedly increased risk of AML transformation (25.8%, vs. 1.7%, p=.0001) and a worse progression-free survival (PFS) (median 20.3, vs. >50 months, p=.009) than non-R882 mutant MDS cases. …”
  2. 13202

    Table_1_DNMT3A R882 Mutations Confer Unique Clinicopathologic Features in MDS Including a High Risk of AML Transformation.docx by Majd Jawad (12157533)

    Published 2022
    “…Next with the largest cohort of patients with DNMT3A R882 mutant MDS known to date from multiple institutions, DNMT3A R882 mutant MDS cases were shown to have more severe leukopenia, enriched SRSF2 and IDH2 mutations, increased cases with excess blasts (47% vs 22.5%, p=.004), markedly increased risk of AML transformation (25.8%, vs. 1.7%, p=.0001) and a worse progression-free survival (PFS) (median 20.3, vs. >50 months, p=.009) than non-R882 mutant MDS cases. …”
  3. 13203

    Decrease of galectin-3 positive cells in bleomycin-injured lung tissue upon administration of hUC-MSC. by Gianluca Moroncini (784833)

    Published 2018
    “…<p>Macrophage infiltration in mouse lungs at days 8 (<b>A-D</b>) and 21 (<b>E-H</b>) after endotracheal injection of sterile saline (saline) (<b>A, E</b>) or bleomycin (bleomycin) (<b>B, F</b>), the latter also followed by intravenous infusion of hUC-MSC (bleomycin+hUC-MSC) (<b>D, H</b>) or sterile saline (bleomycin+saline) (<b>C, G</b>). …”
  4. 13204

    Active spread of mtDNAs in the network can increase and decrease cell-to-cell variability from cell divisions. by Robert C. Glastad (10692277)

    Published 2023
    “…Rows show different values of initial mutant proportion, with <i>h</i> = 0.1 in the top row and <i>h</i> = 0.5 in the bottom row. The three columns for each panel give decreasing network heterogeneity, expressed via different seed numbers, 4, 16 and 64 (more seed points give a more homogeneous network). …”
  5. 13205

    17-hydroxyprogesterone (17-OHP) production is increased whereas androstenedione production is decreased by exposure of the fetal testes to MEHP. by François Chauvigné (340084)

    Published 2013
    “…<p>Effects of 10 µM MEHP on 17-OHP and androstenedione secretion by fetal rat testes cultured for 72 h, beginning at GD14.5. We determined 17-OHP and androstenedione concentrations with specific RIAs. …”
  6. 13206
  7. 13207
  8. 13208
  9. 13209
  10. 13210
  11. 13211

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  12. 13212

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  13. 13213

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  14. 13214

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  15. 13215

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  16. 13216

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  17. 13217

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  18. 13218

    A General in Situ Deposition Strategy for Synthesis of Janus Composite Fabrics with Co(CO<sub>3</sub>)<sub>0.5</sub>OH·0.11H<sub>2</sub>O Nanoneedles for Oil–Water Separation by Luyang Hu (8689470)

    Published 2020
    “…Especially using the water wetted composite fabric as a separation cell, the built-in lyophobic layer originating from fluid passed through the nonwetting region of wetted fabric decreases the unfavorable contact between lyophobic interface and separated liquid, and the permeation flux is enhanced by 214.5% for water and by 112.5% for oil, respectively, compared to that in the pristine fabric, whereas it has no effect on the separation efficiency of a heavy oil–water mixture. …”
  19. 13219

    Image_5_Identification and Functional Characterization of Sugarcane Invertase Inhibitor (ShINH1): A Potential Candidate for Reducing Pre- and Post-harvest Loss of Sucrose in Sugarc... by Suresha G. Shivalingamurthy (5169917)

    Published 2018
    “…Recombinant ShINH1 potently inhibited acid invertase (IC<sub>50</sub> 22.5 nM), making it a candidate for controlling pre- and post-harvest deterioration of sucrose in sugarcane. …”
  20. 13220