Showing 13,501 - 13,520 results of 113,423 for search '(( 50 ((we decrease) OR (a decrease)) ) OR ( 5 ((we decrease) OR (a decrease)) ))', query time: 2.01s Refine Results
  1. 13501

    Table_3_Altering Dietary Soluble Protein Levels With Decreasing Crude Protein May Be a Potential Strategy to Improve Nitrogen Efficiency in Hu Sheep Based on Rumen Microbiome and M... by Zhenbin Zhang (1444888)

    Published 2022
    “…Approximately 6-month-old, 32 healthy fattening male Hu sheep with similar genetic merit and an initial body weight of 40.37 ± 1.18 kg were selected, and divided into four groups (n = 8) using the following completely randomized design: the control diet (CON) with a 16.7% crude protein (CP) content was prepared to meet the nutritional requirements of fattening sheep [body weight (BW): 40 kg, average daily gain (ADG): 200–250 g/d] according to the NRC recommendations; other three include low protein diets (LPA, LPB, and LPC) of CP decreased by ~10%, with SP proportion (%CP) of 21.2, 25.9, and 29.4 respectively. …”
  2. 13502

    Table_1_Altering Dietary Soluble Protein Levels With Decreasing Crude Protein May Be a Potential Strategy to Improve Nitrogen Efficiency in Hu Sheep Based on Rumen Microbiome and M... by Zhenbin Zhang (1444888)

    Published 2022
    “…Approximately 6-month-old, 32 healthy fattening male Hu sheep with similar genetic merit and an initial body weight of 40.37 ± 1.18 kg were selected, and divided into four groups (n = 8) using the following completely randomized design: the control diet (CON) with a 16.7% crude protein (CP) content was prepared to meet the nutritional requirements of fattening sheep [body weight (BW): 40 kg, average daily gain (ADG): 200–250 g/d] according to the NRC recommendations; other three include low protein diets (LPA, LPB, and LPC) of CP decreased by ~10%, with SP proportion (%CP) of 21.2, 25.9, and 29.4 respectively. …”
  3. 13503

    Image_2_Altering Dietary Soluble Protein Levels With Decreasing Crude Protein May Be a Potential Strategy to Improve Nitrogen Efficiency in Hu Sheep Based on Rumen Microbiome and M... by Zhenbin Zhang (1444888)

    Published 2022
    “…Approximately 6-month-old, 32 healthy fattening male Hu sheep with similar genetic merit and an initial body weight of 40.37 ± 1.18 kg were selected, and divided into four groups (n = 8) using the following completely randomized design: the control diet (CON) with a 16.7% crude protein (CP) content was prepared to meet the nutritional requirements of fattening sheep [body weight (BW): 40 kg, average daily gain (ADG): 200–250 g/d] according to the NRC recommendations; other three include low protein diets (LPA, LPB, and LPC) of CP decreased by ~10%, with SP proportion (%CP) of 21.2, 25.9, and 29.4 respectively. …”
  4. 13504

    Image_1_Altering Dietary Soluble Protein Levels With Decreasing Crude Protein May Be a Potential Strategy to Improve Nitrogen Efficiency in Hu Sheep Based on Rumen Microbiome and M... by Zhenbin Zhang (1444888)

    Published 2022
    “…Approximately 6-month-old, 32 healthy fattening male Hu sheep with similar genetic merit and an initial body weight of 40.37 ± 1.18 kg were selected, and divided into four groups (n = 8) using the following completely randomized design: the control diet (CON) with a 16.7% crude protein (CP) content was prepared to meet the nutritional requirements of fattening sheep [body weight (BW): 40 kg, average daily gain (ADG): 200–250 g/d] according to the NRC recommendations; other three include low protein diets (LPA, LPB, and LPC) of CP decreased by ~10%, with SP proportion (%CP) of 21.2, 25.9, and 29.4 respectively. …”
  5. 13505
  6. 13506
  7. 13507

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  8. 13508

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  9. 13509

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  10. 13510

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  11. 13511

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  12. 13512

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  13. 13513

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  14. 13514

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  15. 13515

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  16. 13516

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  17. 13517

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  18. 13518

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  19. 13519

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”
  20. 13520

    Chloro Half-Sandwich Osmium(II) Complexes:  Influence of Chelated N,N-Ligands on Hydrolysis, Guanine Binding, and Cytotoxicity by Anna F. A. Peacock (1297842)

    Published 2007
    “…The Os<sup>II</sup> complexes hydrolyze up to 100 times more slowly than their Ru<sup>II</sup> analogues. The p<i>K</i>*<sub>a</sub> of the aqua adducts decreased with a similar trend (p<i>K</i>*<sub>a</sub> = 6.3 and 5.8 for en and phen adducts, respectively). …”