Search alternatives:
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
nm decrease » nn decrease (Expand Search), _ decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
nm decrease » nn decrease (Expand Search), _ decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
421
-
422
-
423
-
424
-
425
-
426
-
427
-
428
-
429
-
430
-
431
-
432
-
433
-
434
-
435
Structural Characterization of Ceria-Supported Pt Nanoparticles by Flame-Assisted Spray Pyrolysis Using a Burner Diffusion Flame
Published 2021“…The synthesized particles mainly consist of 100 nm-scale CeO<sub>2</sub> with 10 nm-scale Pt and aggregation of small CeO<sub>2</sub> less than 10 nm with highly dispersed Pt at a maximum flame temperature <i>T</i><sub>max</sub> ≈ 1800 K. …”
-
436
Structural Characterization of Ceria-Supported Pt Nanoparticles by Flame-Assisted Spray Pyrolysis Using a Burner Diffusion Flame
Published 2021“…The synthesized particles mainly consist of 100 nm-scale CeO<sub>2</sub> with 10 nm-scale Pt and aggregation of small CeO<sub>2</sub> less than 10 nm with highly dispersed Pt at a maximum flame temperature <i>T</i><sub>max</sub> ≈ 1800 K. …”
-
437
Structural Characterization of Ceria-Supported Pt Nanoparticles by Flame-Assisted Spray Pyrolysis Using a Burner Diffusion Flame
Published 2021“…The synthesized particles mainly consist of 100 nm-scale CeO<sub>2</sub> with 10 nm-scale Pt and aggregation of small CeO<sub>2</sub> less than 10 nm with highly dispersed Pt at a maximum flame temperature <i>T</i><sub>max</sub> ≈ 1800 K. …”
-
438
Structural Characterization of Ceria-Supported Pt Nanoparticles by Flame-Assisted Spray Pyrolysis Using a Burner Diffusion Flame
Published 2021“…The synthesized particles mainly consist of 100 nm-scale CeO<sub>2</sub> with 10 nm-scale Pt and aggregation of small CeO<sub>2</sub> less than 10 nm with highly dispersed Pt at a maximum flame temperature <i>T</i><sub>max</sub> ≈ 1800 K. …”
-
439
-
440