Showing 11,181 - 11,200 results of 30,890 for search '(( 50 ((we decrease) OR (mean decrease)) ) OR ( 100 ((nm decrease) OR (a decrease)) ))', query time: 1.02s Refine Results
  1. 11181

    ADC maps of one volunteer. by Tobit Führes (12647099)

    Published 2023
    “…The black-blood state was best with monopolar encodings and decreased significantly (p < 0.001) with velocity- and/or acceleration-compensation. …”
  2. 11182

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  3. 11183

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  4. 11184

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  5. 11185

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  6. 11186

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  7. 11187

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  8. 11188

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  9. 11189

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  10. 11190

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  11. 11191

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  12. 11192

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  13. 11193

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  14. 11194

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  15. 11195

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  16. 11196

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  17. 11197

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  18. 11198

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  19. 11199

    Combining Ultrasound and Capillary-Embedded T‑Junction Microfluidic Devices to Scale Up the Production of Narrow-Sized Microbubbles through Acoustic Fragmentation by Aaqib H. Khan (9407159)

    Published 2022
    “…The rate of microbubble production was found to increase from 180 microbubbles/s in the absence of ultrasound to (6.5 ± 1.2) × 10<sup>6</sup> bubble/s in the presence of ultrasound (100% ultrasound amplitude). When stored in a closed environment, the microbubbles were observed to be stable for up to 30 days, with the concentration of the microbubble suspension decreasing from ∼2.81 × 10<sup>9</sup>/mL to ∼2.3 × 10<sup>6</sup>/mL and the size changing from 1.73 ± 0.2 to 1.45 ± 0.3 μm at the end of 30 days. …”
  20. 11200

    Absolute values of <i>M</i><sub>1</sub> and <i>M</i><sub>2</sub>. by Tobit Führes (12647099)

    Published 2023
    “…The black-blood state was best with monopolar encodings and decreased significantly (p < 0.001) with velocity- and/or acceleration-compensation. …”