Search alternatives:
mean decrease » a decrease (Expand Search)
fold decrease » fold increase (Expand Search), fold increased (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
mean decrease » a decrease (Expand Search)
fold decrease » fold increase (Expand Search), fold increased (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), gy decreased (Expand Search)
-
1261
Coefficient of determination (<i>R</i><sup>2</sup>) estimated using 10-fold cross validation of our adaptive prediction algorithm.
Published 2011“…</p><p>For each method and mFDR cutoff, the first row presents the baseline <i>R</i><sup>2</sup>; “main” and “inter” refers to the increase or decrease in <i>R</i><sup>2</sup> from “non-SNP.” Standard errors of the individual <i>R</i><sup>2</sup> for each of the ten folds are presented within parentheses.…”
-
1262
Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts
Published 2009“…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
-
1263
Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts
Published 2009“…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
-
1264
Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts
Published 2009“…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
-
1265
Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts
Published 2009“…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
-
1266
Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts
Published 2009“…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
-
1267
Nitric Oxide Oxidatively Nitrosylates Ni(I) and Cu(I) <i>C</i>-Organonitroso Adducts
Published 2009“…[Me<sub>2</sub>NN]Cu(NCMe) reacts with 0.5 equiv of ArNO in ether to give the dinuclear adducts {[Me<sub>2</sub>NN]Cu}<sub>2</sub>(μ-η<sup>2</sup>:η<sup>1</sup>-ONAr) (<b>2a</b> and <b>2b</b>), which exhibit η<sup>2</sup> and η<sup>1</sup> bonding of the ArNO moiety with separate [Me<sub>2</sub>NN]Cu fragments possessing N−O distances of 1.375(6) Å (<b>2a</b>) and 1.368(2) Å (<b>2b</b>). …”
-
1268
Effect of incubation time on IC<sub>50</sub>s for zanamivir, oseltamivir and peramivir.
Published 2011“…(A) Final higher IC<sub>50</sub> values for binding of zanamivir without preincubation compared to preincubation and the decreases in IC<sub>50</sub>s without preincubation over the 60 min correlate with slow binding. …”
-
1269
-
1270
Differences among the classes of CAMs.
Published 2025“…A representative HPD <b>1466</b>, with a 50% effective concentration against HBV replication of 0.25 µM, decreased capsid and core protein accumulation by 50–90% in HepDES19 and HepG2.2.15 cells. …”
-
1271
-
1272
Double Mutant of Chymotrypsin Inhibitor 2 Stabilized through Increased Conformational Entropy
Published 2022Subjects: -
1273
-
1274
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
1275
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
1276
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
1277
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
1278
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
1279
Supramolecular DNA Photonic Hydrogels for On-Demand Control of Coloration with High Spatial and Temporal Resolution
Published 2021“…Dynamically generating color patterns requires control of nanoparticle organization within a polymer network on-demand, which is challenging. We solve this problem by creating a DNA hydrogel system that shows a 50 000-fold decrease in modulus upon heating by ∼10 °C. …”
-
1280