Showing 801 - 820 results of 16,260 for search '(( 50 ((we decrease) OR (mean decrease)) ) OR ( 5 ((ng decrease) OR (nn decrease)) ))', query time: 0.78s Refine Results
  1. 801
  2. 802
  3. 803
  4. 804
  5. 805
  6. 806
  7. 807
  8. 808
  9. 809
  10. 810
  11. 811
  12. 812
  13. 813

    Interplay Between Applied Force and Radical Attack in the Mechanochemical Chain Scission of Poly(acrylic acid) by Michael T. Robo (1342344)

    Published 2022
    “…The force needed for bond rupture was estimated to decrease from 4.7 to 2.5 nN. This occurs because hydrogen atom abstraction drastically alters the potential energy surface of the scissile bond. …”
  14. 814

    Interplay Between Applied Force and Radical Attack in the Mechanochemical Chain Scission of Poly(acrylic acid) by Michael T. Robo (1342344)

    Published 2022
    “…The force needed for bond rupture was estimated to decrease from 4.7 to 2.5 nN. This occurs because hydrogen atom abstraction drastically alters the potential energy surface of the scissile bond. …”
  15. 815

    Interplay Between Applied Force and Radical Attack in the Mechanochemical Chain Scission of Poly(acrylic acid) by Michael T. Robo (1342344)

    Published 2022
    “…The force needed for bond rupture was estimated to decrease from 4.7 to 2.5 nN. This occurs because hydrogen atom abstraction drastically alters the potential energy surface of the scissile bond. …”
  16. 816

    Interplay Between Applied Force and Radical Attack in the Mechanochemical Chain Scission of Poly(acrylic acid) by Michael T. Robo (1342344)

    Published 2022
    “…The force needed for bond rupture was estimated to decrease from 4.7 to 2.5 nN. This occurs because hydrogen atom abstraction drastically alters the potential energy surface of the scissile bond. …”
  17. 817

    Interplay Between Applied Force and Radical Attack in the Mechanochemical Chain Scission of Poly(acrylic acid) by Michael T. Robo (1342344)

    Published 2022
    “…The force needed for bond rupture was estimated to decrease from 4.7 to 2.5 nN. This occurs because hydrogen atom abstraction drastically alters the potential energy surface of the scissile bond. …”
  18. 818
  19. 819
  20. 820