Showing 13,401 - 13,420 results of 106,501 for search '(( 50 ((we decrease) OR (mean decrease)) ) OR ( 5 ((nn decrease) OR (a decrease)) ))', query time: 1.58s Refine Results
  1. 13401

    Spline curves for assessing the association between sleep duration and constipation and related components. by Toshiaki Ohkuma (483462)

    Published 2024
    “…The circles at 4.5, 5.5, 6.5, 7.5, and 8.5 hours/day represent the points at which knots were placed. …”
  2. 13402
  3. 13403
  4. 13404
  5. 13405
  6. 13406
  7. 13407
  8. 13408
  9. 13409
  10. 13410
  11. 13411
  12. 13412
  13. 13413

    Tree cover change in percent between 2000 and 2010 (TCC) for 5×5 km grid cells. by Jonas Nüchel (4093243)

    Published 2017
    “…<p>Green colors indicate an increase, gray colors indicate a slight increase or decrease and red colors indicate a decrease in tree cover between 2000 and 2010. …”
  14. 13414

    Image_6_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
  15. 13415

    Image_9_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
  16. 13416

    Image_7_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.jpeg by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
  17. 13417

    Image_10_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.png by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
  18. 13418

    Table_3_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.xls by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”
  19. 13419
  20. 13420

    Image_11_SmDXS5, acting as a molecular valve, plays a key regulatory role in the primary and secondary metabolism of tanshinones in Salvia miltiorrhiza.png by Da-chuan Zhang (14096760)

    Published 2022
    “…Here, we found that SmDXS5, a rate-limiting enzyme-coding gene located at the intersection of primary and secondary metabolism, can effectively change the transcription level and secondary metabolome profile of hairy roots of S. miltiorrhiza, and significantly increase the content of tanshinones. …”