Search alternatives:
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
ms decrease » _ decrease (Expand Search), nn decrease (Expand Search), use decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), teer decrease (Expand Search)
ms decrease » _ decrease (Expand Search), nn decrease (Expand Search), use decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1121
-
1122
-
1123
-
1124
-
1125
-
1126
-
1127
-
1128
-
1129
-
1130
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
1131
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
1132
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
1133
Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study
Published 2024“…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
-
1134
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
-
1135
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
-
1136
Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries
Published 2022“…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
-
1137
-
1138
-
1139
-
1140