Showing 121 - 140 results of 43,017 for search '(( 50 ((we decrease) OR (nn decrease)) ) OR ( 16 ((w decrease) OR (a decrease)) ))', query time: 0.89s Refine Results
  1. 121

    LPS stimulation decreases SMRT expression by upregulating miR-16. by Rui Zhou (38109)

    Published 2012
    “…SC-514 showed no significant effects on LPS<i>-</i>induced decrease of SMRT. (D) Effects of anti-miR-16 on LPS-induced downregulation of the SMRT protein in H69 and U937 cells. …”
  2. 122
  3. 123
  4. 124
  5. 125
  6. 126
  7. 127
  8. 128
  9. 129

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The slow population accounts for 16%, with a diffusion coefficient of 0.104 μm<sup>2</sup>/s, while the fast population constitutes 84% with a diffusion coefficient of 0.634 μm<sup>2</sup>/s. …”
  10. 130

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The slow population accounts for 16%, with a diffusion coefficient of 0.104 μm<sup>2</sup>/s, while the fast population constitutes 84% with a diffusion coefficient of 0.634 μm<sup>2</sup>/s. …”
  11. 131

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The slow population accounts for 16%, with a diffusion coefficient of 0.104 μm<sup>2</sup>/s, while the fast population constitutes 84% with a diffusion coefficient of 0.634 μm<sup>2</sup>/s. …”
  12. 132

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The slow population accounts for 16%, with a diffusion coefficient of 0.104 μm<sup>2</sup>/s, while the fast population constitutes 84% with a diffusion coefficient of 0.634 μm<sup>2</sup>/s. …”
  13. 133
  14. 134
  15. 135
  16. 136
  17. 137
  18. 138

    Dynorphin Neuropeptides Decrease Apparent Proton Affinity of ASIC1a by Occluding the Acidic Pocket by Lilia Leisle (11356934)

    Published 2021
    “…Covalently tethering Big Dyn to its ASIC1a binding site dramatically decreased the proton sensitivity of channel activation, suggesting that Big Dyn stabilizes a resting conformation of ASIC1a and dissociates from its binding site during channel opening.…”
  19. 139

    Dynorphin Neuropeptides Decrease Apparent Proton Affinity of ASIC1a by Occluding the Acidic Pocket by Lilia Leisle (11356934)

    Published 2021
    “…Covalently tethering Big Dyn to its ASIC1a binding site dramatically decreased the proton sensitivity of channel activation, suggesting that Big Dyn stabilizes a resting conformation of ASIC1a and dissociates from its binding site during channel opening.…”
  20. 140