Showing 1 - 20 results of 57 for search '(( 50 _ decrease ) OR ( 50 ((ns decrease) OR (we decrease)) ))~', query time: 0.21s Refine Results
  1. 1
  2. 2

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  3. 3

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  4. 4

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  5. 5

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  6. 6

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  7. 7

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  8. 8

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  9. 9

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  10. 10

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  11. 11

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  12. 12

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  13. 13

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
  14. 14

    Atomically Precise Au<sub>42</sub> Nanorods with Longitudinal Excitons for an Intense Photothermal Effect by Yingwei Li (701628)

    Published 2022
    “…However, when the size decreases below ∼2 nm, Au nanostructures become nonmetallic, and whether the longitudinal excitation in plasmonic nanorods can be inherited is unknown. …”
  15. 15

    Discovery of New Inhibitors of Hepatitis C Virus NS3/4A Protease and Its D168A Mutant by Ittipat Meewan (7455041)

    Published 2019
    “…Several drugs targeting the protease have been developed, but drug-resistant mutant strains emerged. Here, we screened a library and synthesized a novel class of small molecules based on a tryptophan derivative scaffold identified as HCV NS3/4A protease inhibitors that are active against both wild type and mutant form of the protease. …”
  16. 16

    S2 Fig - by Xinyue Yang (629144)

    Published 2024
    “…Sprague-Dawley (SD) rats were randomly divided into four groups: normal saline (NS), and 50 (50-cur), 100 (100-cur), and 200 mg/kg curcumin (200-cur) groups. …”
  17. 17

    S1 Fig - by Xinyue Yang (629144)

    Published 2024
    “…Sprague-Dawley (SD) rats were randomly divided into four groups: normal saline (NS), and 50 (50-cur), 100 (100-cur), and 200 mg/kg curcumin (200-cur) groups. …”
  18. 18

    S1 Data - by Xinyue Yang (629144)

    Published 2024
    “…Sprague-Dawley (SD) rats were randomly divided into four groups: normal saline (NS), and 50 (50-cur), 100 (100-cur), and 200 mg/kg curcumin (200-cur) groups. …”
  19. 19

    S5 Fig - by Xinyue Yang (629144)

    Published 2024
    “…Sprague-Dawley (SD) rats were randomly divided into four groups: normal saline (NS), and 50 (50-cur), 100 (100-cur), and 200 mg/kg curcumin (200-cur) groups. …”
  20. 20

    S4 Fig - by Xinyue Yang (629144)

    Published 2024
    “…Sprague-Dawley (SD) rats were randomly divided into four groups: normal saline (NS), and 50 (50-cur), 100 (100-cur), and 200 mg/kg curcumin (200-cur) groups. …”