Showing 141 - 160 results of 16,568 for search '(( 50 a decrease ) OR ((( 50 we decrease ) OR ( 50 ((nn decrease) OR (teer decrease)) ))))', query time: 0.49s Refine Results
  1. 141
  2. 142
  3. 143
  4. 144
  5. 145
  6. 146

    Temporal profiles of the key BO-NN features. by Julia Berezutskaya (9080269)

    Published 2020
    “…Right plot show the gradual decrease in the TM tuning for the features highlighted in <b>c</b> as well as the gradual increase in the temporal response profile (i.e. optimal shifts for the prediction of the key BO-NN features using Praat features shown in <b>a</b>). …”
  7. 147
  8. 148
  9. 149
  10. 150
  11. 151
  12. 152
  13. 153

    Top 50 results of a commercial kinase screen using [γ<sup>33</sup>]-ATP and human obscurin SH3-DH as substrates. by Daniel Koch (388049)

    Published 2023
    “…While MST2 addition resulted in strong and saturable phosphorylation, TBK1 led to much lower phosphorylation levels and CaMK4 addition led to an intermediate phosphorylation level exhibiting a biphasic behaviour with phosphorylation levels decreasing at higher substrate concentrations. …”
  14. 154

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
  15. 155

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
  16. 156

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
  17. 157

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
  18. 158
  19. 159
  20. 160

    Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries by Minyuan M. Li (12616823)

    Published 2022
    “…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”