Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
50 a » 50 _ (Expand Search), 50 μ (Expand Search), 50 c (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), teer decrease (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
50 a » 50 _ (Expand Search), 50 μ (Expand Search), 50 c (Expand Search)
-
621
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
622
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
623
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
624
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
625
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
626
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
627
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
628
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
629
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
630
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
631
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
632
-
633
-
634
Using climate envelope models to identify potential ecological trajectories on the Kenai Peninsula, Alaska
Published 2018“…We use two lines of evidence, model convergence and empirically measured rates of change, to identify the following plausible ecological trajectories for the peninsula: (1.) alpine tundra and sub-alpine shrub decrease, (2.) perennial snow and ice decrease, (3.) forests remain on the Kenai Lowlands, (4.) the contiguous white-Lutz-Sitka spruce complex declines, and (5.) mixed conifer afforestation occurs along the Gulf of Alaska coast. …”
-
635
-
636
-
637
-
638
Presentation_1_Eosinophils Decrease Pulmonary Metastatic Mammary Tumor Growth.pptx
Published 2022“…We found that IL5Tg mice exhibit reduced pulmonary metastatic colonization and decreased metastatic tumor burden compared to wild-type (WT) mice or eosinophil-deficient mice. …”
-
639
Comparison among conventional high voltage step-up ratio converters with the suggested converter.
Published 2024Subjects: -
640