Showing 781 - 800 results of 63,348 for search '(( 50 a decrease ) OR ( 5 ((((wt decrease) OR (we decrease))) OR (nn decrease)) ))', query time: 0.96s Refine Results
  1. 781
  2. 782
  3. 783
  4. 784
  5. 785
  6. 786

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  7. 787

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  8. 788

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  9. 789

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  10. 790

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  11. 791

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  12. 792

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  13. 793

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  14. 794

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  15. 795

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  16. 796

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  17. 797

    Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet by Soonho Kwon (1402972)

    Published 2025
    “…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
  18. 798
  19. 799
  20. 800

    Using climate envelope models to identify potential ecological trajectories on the Kenai Peninsula, Alaska by Dawn Robin Magness (6157265)

    Published 2018
    “…We use two lines of evidence, model convergence and empirically measured rates of change, to identify the following plausible ecological trajectories for the peninsula: (1.) alpine tundra and sub-alpine shrub decrease, (2.) perennial snow and ice decrease, (3.) forests remain on the Kenai Lowlands, (4.) the contiguous white-Lutz-Sitka spruce complex declines, and (5.) mixed conifer afforestation occurs along the Gulf of Alaska coast. …”