Showing 41 - 60 results of 145,905 for search '(( 50 c decrease ) OR ( 10 ((((nm decrease) OR (a decrease))) OR (nn decrease)) ))', query time: 0.89s Refine Results
  1. 41
  2. 42
  3. 43
  4. 44
  5. 45
  6. 46
  7. 47
  8. 48
  9. 49
  10. 50
  11. 51

    mTORC1 hyperactivation led to a decreased autophagic activity in the podocytes. by Wakiko Iwata (8600457)

    Published 2020
    “…The white box indicates the location of the magnified figure. Scale bar: 50 μm. (<b>bottom, right</b>) Quantitative analysis of autophagic activity <i>in vivo</i>. …”
  12. 52
  13. 53
  14. 54
  15. 55
  16. 56
  17. 57

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  18. 58

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  19. 59

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  20. 60

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”