Showing 21 - 40 results of 146,001 for search '(( 50 ms decrease ) OR ((( 10 ((nm decrease) OR (a decrease)) ) OR ( 16 we decrease ))))', query time: 0.92s Refine Results
  1. 21
  2. 22
  3. 23
  4. 24

    Table_1_Decreased synaptic vesicle glycoprotein 2A binding in a rodent model of familial Alzheimer's disease detected by [18F]SDM-16.DOCX by Chao Zheng (728465)

    Published 2023
    “…Introduction<p>Synapse loss is one of the hallmarks of Alzheimer's disease (AD) and is associated with cognitive decline. In this study, we tested [<sup>18</sup>F]SDM-16, a novel metabolically stable SV2A PET imaging probe, in the transgenic APPswe/PS1dE9 (APP/PS1) mouse model of AD and age-matched wild-type (WT) mice at 12 months of age.…”
  5. 25
  6. 26
  7. 27

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  8. 28

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  9. 29

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  10. 30

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  11. 31

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  12. 32
  13. 33
  14. 34
  15. 35

    Repetitive stress induces a decrease in sound-evoked activity. by Ghattas Bisharat (20706928)

    Published 2025
    “…Activity rates decreased during repeated stress compared to baseline (2-way ANOVA, condition F = 185.6, <i>p</i> = 4.8 × 10<sup>−42</sup>, condition: intensity interaction F = 10.37, <i>p</i> = 9.3 × 10<sup>−21</sup>, nested ANOVA (mouse nested within session), condition F = 174, <i>p</i> = 1.5 × 10<sup>−39</sup>, condition: intensity interaction F = 12.7, <i>p</i> = 2 × 10<sup>−26</sup>, post hoc for each level baseline versus repetitive stress <i>p</i> < 0.01 for all levels above 50 dB, all Bonferroni corrected). …”
  16. 36
  17. 37
  18. 38

    The motor torque curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m. by Taochang Li (20642935)

    Published 2025
    “…<p>The motor torque curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.…”
  19. 39

    The motor speed curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m. by Taochang Li (20642935)

    Published 2025
    “…<p>The motor speed curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.…”
  20. 40