Search alternatives:
ms decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
nm decrease » nn decrease (Expand Search), _ decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
50 ms » 50 mg (Expand Search), 50 mm (Expand Search)
16 we » 16 w (Expand Search), 1_ we (Expand Search)
ms decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
nm decrease » nn decrease (Expand Search), _ decrease (Expand Search), gy decreased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
50 ms » 50 mg (Expand Search), 50 mm (Expand Search)
16 we » 16 w (Expand Search), 1_ we (Expand Search)
-
21
-
22
-
23
-
24
Table_1_Decreased synaptic vesicle glycoprotein 2A binding in a rodent model of familial Alzheimer's disease detected by [18F]SDM-16.DOCX
Published 2023“…Introduction<p>Synapse loss is one of the hallmarks of Alzheimer's disease (AD) and is associated with cognitive decline. In this study, we tested [<sup>18</sup>F]SDM-16, a novel metabolically stable SV2A PET imaging probe, in the transgenic APPswe/PS1dE9 (APP/PS1) mouse model of AD and age-matched wild-type (WT) mice at 12 months of age.…”
-
25
-
26
-
27
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
28
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
29
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
30
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
31
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
32
-
33
-
34
-
35
Repetitive stress induces a decrease in sound-evoked activity.
Published 2025“…Activity rates decreased during repeated stress compared to baseline (2-way ANOVA, condition F = 185.6, <i>p</i> = 4.8 × 10<sup>−42</sup>, condition: intensity interaction F = 10.37, <i>p</i> = 9.3 × 10<sup>−21</sup>, nested ANOVA (mouse nested within session), condition F = 174, <i>p</i> = 1.5 × 10<sup>−39</sup>, condition: intensity interaction F = 12.7, <i>p</i> = 2 × 10<sup>−26</sup>, post hoc for each level baseline versus repetitive stress <i>p</i> < 0.01 for all levels above 50 dB, all Bonferroni corrected). …”
-
36
-
37
-
38
The motor torque curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.
Published 2025“…<p>The motor torque curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.…”
-
39
The motor speed curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.
Published 2025“…<p>The motor speed curves of load increase/decrease (A) the load of 10 N • m (B) the load of 20 N • m.…”
-
40