Showing 21 - 40 results of 25,607 for search '(( 50 ms decrease ) OR ( 10 ((((nm decrease) OR (mean decrease))) OR (nn decrease)) ))', query time: 0.49s Refine Results
  1. 21
  2. 22
  3. 23
  4. 24
  5. 25
  6. 26
  7. 27

    Repetitive stress induces a decrease in sound-evoked activity. by Ghattas Bisharat (20706928)

    Published 2025
    “…<p>(a) Left: noise-evoked activity rates at different noise intensities for chronically tracked PPys cells in baseline and repeated stress conditions (<i>N</i> = 5 mice, <i>n</i> = 285 neurons, mean ± SE). Activity rates decreased during repeated stress compared to baseline (2-way ANOVA, condition F = 185.6, <i>p</i> = 4.8 × 10<sup>−42</sup>, condition: intensity interaction F = 10.37, <i>p</i> = 9.3 × 10<sup>−21</sup>, nested ANOVA (mouse nested within session), condition F = 174, <i>p</i> = 1.5 × 10<sup>−39</sup>, condition: intensity interaction F = 12.7, <i>p</i> = 2 × 10<sup>−26</sup>, post hoc for each level baseline versus repetitive stress <i>p</i> < 0.01 for all levels above 50 dB, all Bonferroni corrected). …”
  8. 28
  9. 29
  10. 30
  11. 31

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  12. 32

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  13. 33

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  14. 34

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  15. 35

    Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries by Yuan Liu (88411)

    Published 2023
    “…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
  16. 36
  17. 37
  18. 38
  19. 39
  20. 40