Showing 1 - 20 results of 33,406 for search '(( 50 n decrease ) OR ((((( 5 we decrease ) OR ( 5 nm decrease ))) OR ( 50 nn decrease ))))', query time: 0.76s Refine Results
  1. 1

    Scenario (6): Parameter variation (50% decrease)—With 5 N.m load applied at t = 0.3s. by Djaloul Karboua (16510091)

    Published 2023
    “…<p>Scenario (6): Parameter variation (50% decrease)—With 5 N.m load applied at t = 0.3s.…”
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Global Land Use Change Impacts on Soil Nitrogen Availability and Environmental Losses by Jing Wang (6206297)

    Published 2025
    “…By compiling a global data set of 1,782 paired observations from 185 publications, we show that land use conversion from natural to managed ecosystems significantly reduced NNM by 7.5% (−11.5, −2.8%) and increased NN by 150% (86, 194%), indicating decreasing N availability while increasing potential N loss through denitrification and nitrate leaching. …”
  8. 8
  9. 9
  10. 10

    Discovery of the Triazolo[1,5‑<i>a</i>]Pyrimidine-Based Derivative WS-898 as a Highly Efficacious and Orally Bioavailable ABCB1 Inhibitor Capable of Overcoming Multidrug Resistance... by Shuai Wang (109515)

    Published 2021
    “…Targeting P-glycoprotein (ABCB1 or P-gp) has been recognized as a promising strategy to overcome multidrug resistance. Here, we reported our medicinal chemistry efforts that led to the discovery of the triazolo­[1,5-<i>a</i>]­pyrimidine derivative <b>WS-898</b> as a highly effective ABCB1 inhibitor capable of reversing paclitaxel (PTX) resistance in drug-resistant SW620/Ad300, KB-C2, and HEK293/ABCB1 cells (IC<sub>50</sub> = 5.0, 3.67, and 3.68 nM, respectively), more potent than verapamil and zosuquidar. …”
  11. 11

    Discovery of the Triazolo[1,5‑<i>a</i>]Pyrimidine-Based Derivative WS-898 as a Highly Efficacious and Orally Bioavailable ABCB1 Inhibitor Capable of Overcoming Multidrug Resistance... by Shuai Wang (109515)

    Published 2021
    “…Targeting P-glycoprotein (ABCB1 or P-gp) has been recognized as a promising strategy to overcome multidrug resistance. Here, we reported our medicinal chemistry efforts that led to the discovery of the triazolo­[1,5-<i>a</i>]­pyrimidine derivative <b>WS-898</b> as a highly effective ABCB1 inhibitor capable of reversing paclitaxel (PTX) resistance in drug-resistant SW620/Ad300, KB-C2, and HEK293/ABCB1 cells (IC<sub>50</sub> = 5.0, 3.67, and 3.68 nM, respectively), more potent than verapamil and zosuquidar. …”
  12. 12

    TUDCA decreases ER stress in HOX neonatal rat lungs. by Kirkwood A. Pritchard Jr. (13449794)

    Published 2022
    “…(<b>C</b>) In IHC stain, P-IRE1α levels are decreased (40.8±3.5 A.U. <i>vs</i> 53.1±5.0 A.U., p<0.001, n = 6, 3 for each sex) in chronic hyperoxia exposed neonatal rat lungs by TUDCA. …”
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

    Data_Sheet_2_Hepcidin Decreases Rotenone-Induced α-Synuclein Accumulation via Autophagy in SH-SY5Y Cells.ZIP by Meiqi Li (4169182)

    Published 2020
    “…This study investigated the clearance effects of hepcidin on α-syn induced by a relatively low concentration of rotenone exposure or α-syn overexpression to elucidate the potential clearance pathway involved in this process. We demonstrated that SH-SY5Y cell viability was impaired after rotenone treatment in a dose-dependent manner. α-syn expression and iron content increased under a low concentration rotenone (25 nM for 3 days) treatment in SH-SY5Y cells. …”
  18. 18

    Data_Sheet_1_Hepcidin Decreases Rotenone-Induced α-Synuclein Accumulation via Autophagy in SH-SY5Y Cells.PDF by Meiqi Li (4169182)

    Published 2020
    “…This study investigated the clearance effects of hepcidin on α-syn induced by a relatively low concentration of rotenone exposure or α-syn overexpression to elucidate the potential clearance pathway involved in this process. We demonstrated that SH-SY5Y cell viability was impaired after rotenone treatment in a dose-dependent manner. α-syn expression and iron content increased under a low concentration rotenone (25 nM for 3 days) treatment in SH-SY5Y cells. …”
  19. 19
  20. 20