Search alternatives:
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), mean decrease (Expand Search), use decreased (Expand Search)
nn decrease » _ decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
421
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
422
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
423
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
424
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
425
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
426
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…Using a classical RexPoN force-field, we found that the ions in 1000 H<sub>2</sub>O’s spend almost 50% of the time on the surface and 0.5 nm beneath it with a slight preference for OH<sup>–</sup> ion to reside longer on the surface. …”
-
427
-
428
-
429
-
430
-
431
-
432
-
433
-
434
-
435
-
436
-
437
-
438
-
439
-
440