يعرض 19,861 - 19,880 نتائج من 104,820 نتيجة بحث عن '(( 50 we decrease ) OR ( 5 ((fold decrease) OR (((mean decrease) OR (a decrease)))) ))', وقت الاستعلام: 1.56s تنقيح النتائج
  1. 19861

    Image_5_High Dose Vitamin D3 Supplementation Is Not Associated With Lower Mortality in Critically Ill Patients: A Meta-Analysis of Randomized Control Trials.pdf حسب Zhiwei Gao (686378)

    منشور في 2022
    "…The use of a high dose of vitamin D3 in critically ill patients could not decrease the mortality truncated to day 28 (RR 0.93, 95% CI 0.78–1.11, P = 0.43) or day 90 (RR 0.91, 95% CI 0.79–1.05, P = 0.21). …"
  2. 19862

    Table_8_A cross-sectional study on the nasopharyngeal microbiota of individuals with SARS-CoV-2 infection across three COVID-19 waves in India.XLSX حسب Tungadri Bose (680564)

    منشور في 2023
    "…In general, we observed a decrease in the burden of opportunistic pathogens in the host microbiota during the later waves of infection.…"
  3. 19863

    Piwi dissociates from mitotic nuage at the central spindle in a <i>klp10A</i>-dependent manner. حسب Zsolt G. Venkei (8575353)

    منشور في 2020
    "…Open arrowheads (D) point to a Piwi-positive nuage particle, sliding along and later releasing the MT bundle, without decreasing GFP-Piwi signal. …"
  4. 19864
  5. 19865
  6. 19866
  7. 19867
  8. 19868
  9. 19869

    Structure diagram of ensemble model. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  10. 19870

    Fitting formula parameter table. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  11. 19871

    Test plan. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  12. 19872

    Fitting surface parameters. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  13. 19873

    Model generalisation validation error analysis. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  14. 19874

    Empirical model prediction error analysis. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  15. 19875

    Fitting curve parameters. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  16. 19876

    Test instrument. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  17. 19877

    Empirical model establishment process. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  18. 19878

    Model prediction error trend chart. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  19. 19879

    Basic physical parameters of red clay. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"
  20. 19880

    BP neural network structure diagram. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…Comparative analysis highlights the significant enhancement in prediction accuracy achieved by the proposed ensemble model over single machine learning models, with root mean square error (RMSE) values below 0.05 and mean absolute percentage error (MAPE) values remaining under 2.5% in both frozen and unfrozen states. …"