Showing 361 - 380 results of 16,568 for search '(( 50 we decrease ) OR ( 50 ((((we decrease) OR (nn decrease))) OR (a decrease)) ))', query time: 0.52s Refine Results
  1. 361
  2. 362
  3. 363

    Downregulation of DOM decreases the abundance of PER and TIM. by Zhenxing Liu (399809)

    Published 2019
    “…Downregulation of DOM decreased PER levels at CT1-5 and CT17-21. (Scale bar: 50 um.) …”
  4. 364

    FTY720 treatment decreased tumor growth in a xenograft model of hepatoblastoma. by Laura L. Stafman (6577184)

    Published 2019
    “…There was a trend toward decreased Ki67 staining in FTY720-treated tumors (p = 0.29). …”
  5. 365

    Bacterial strains and plasmids. by Eunsil Choi (8271039)

    Published 2025
    “…Our previous research showed that deleting <i>bipA</i> in <i>Escherichia coli</i> at 20°C leads to a defect in 50S ribosomal assembly and impaired lipopolysaccharide (LPS) synthesis. …”
  6. 366

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  7. 367

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  8. 368

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  9. 369

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  10. 370

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  11. 371

    Layer-Thickness-Dependent Strengthening–Toughening Mechanisms in Crystalline/Amorphous Nanolaminates by Xiaoling Zhou (4644826)

    Published 2025
    “…The mechanical performance of these materials is strongly governed by the crystalline–amorphous interfaces (CAIs), yet the underlying strengthening and toughening mechanisms remain poorly understood. Here, we employ large-scale molecular dynamics simulations to investigate the compressive deformation of C/A nanopillars composed of alternating equal-thickness crystalline Cu and amorphous Cu<sub>50</sub>Zr<sub>50</sub> layers. …”
  12. 372

    S1 File - by Michael Gulledge (20577135)

    Published 2025
    “…During withdrawal, there was a profound loss (peaking on days 2–3) and gradual return of diurnal structure in sleep, body temperature, and locomotor activity, as well as decreased sleep and wake bout durations dependent on lights on/off. …”
  13. 373
  14. 374

    Self-Healable, Injectable Hydrogel with Enhanced Clotrimazole Solubilization as a Potential Therapeutic Platform for Gynecology by Monika Gosecka (1607017)

    Published 2022
    “…Injectable, self-healing hydrogels with enhanced solubilization of hydrophobic drugs are urgently needed for antimicrobial intravaginal therapies. Here, we report the first hydrogel systems constructed of dynamic boronic esters cross-linking unimolecular micelles, which are a reservoir of antifungal hydrophobic drug molecules. …”
  15. 375

    Self-Healable, Injectable Hydrogel with Enhanced Clotrimazole Solubilization as a Potential Therapeutic Platform for Gynecology by Monika Gosecka (1607017)

    Published 2022
    “…Injectable, self-healing hydrogels with enhanced solubilization of hydrophobic drugs are urgently needed for antimicrobial intravaginal therapies. Here, we report the first hydrogel systems constructed of dynamic boronic esters cross-linking unimolecular micelles, which are a reservoir of antifungal hydrophobic drug molecules. …”
  16. 376

    Self-Healable, Injectable Hydrogel with Enhanced Clotrimazole Solubilization as a Potential Therapeutic Platform for Gynecology by Monika Gosecka (1607017)

    Published 2022
    “…Injectable, self-healing hydrogels with enhanced solubilization of hydrophobic drugs are urgently needed for antimicrobial intravaginal therapies. Here, we report the first hydrogel systems constructed of dynamic boronic esters cross-linking unimolecular micelles, which are a reservoir of antifungal hydrophobic drug molecules. …”
  17. 377
  18. 378
  19. 379
  20. 380