Showing 301 - 320 results of 16,749 for search '(( 50 we decrease ) OR ( 50 ((mg decrease) OR (((nn decrease) OR (a decrease)))) ))', query time: 0.64s Refine Results
  1. 301

    DataSheet_1_Efficacy and Safety of Lactobacillus plantarum K50 on Lipids in Koreans With Obesity: A Randomized, Double-Blind Controlled Clinical Trial.docx by Minji Sohn (4166143)

    Published 2022
    “…Similarly, triglyceride levels decreased from 135.4 ± 115.8 mg/dL to 114.5 ± 65.9 mg/dL in the LPK group, with a significant difference between groups. …”
  2. 302
  3. 303

    Top 50 results of a commercial kinase screen using [γ<sup>33</sup>]-ATP and human obscurin SH3-DH as substrates. by Daniel Koch (388049)

    Published 2023
    “…While MST2 addition resulted in strong and saturable phosphorylation, TBK1 led to much lower phosphorylation levels and CaMK4 addition led to an intermediate phosphorylation level exhibiting a biphasic behaviour with phosphorylation levels decreasing at higher substrate concentrations. …”
  4. 304

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
  5. 305

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
  6. 306

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
  7. 307

    Nanodomains and Their Temperature Dependence in a Phosphonium-Based Ionic Liquid: A Single-Molecule Tracking Study by Jemima Opare-Addo (14657955)

    Published 2024
    “…The elimination of the slow population and the presence of a single diffusing population in [P<sub>66614</sub>][Cl] as the temperature increases and the viscosity decreases is consistent with liquid–liquid phase separation (LLPS) as a mechanism of nanodomain formation. …”
  8. 308
  9. 309
  10. 310
  11. 311

    Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries by Minyuan M. Li (12616823)

    Published 2022
    “…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
  12. 312

    Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries by Minyuan M. Li (12616823)

    Published 2022
    “…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
  13. 313

    Interfacial Engineering with a Nanoparticle-Decorated Porous Carbon Structure on β″-Alumina Solid-State Electrolytes for Molten Sodium Batteries by Minyuan M. Li (12616823)

    Published 2022
    “…We present a novel anode interface modification on the β″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. …”
  14. 314
  15. 315
  16. 316
  17. 317
  18. 318
  19. 319

    Factors affecting the biology of <i>Pachycrepoideus vindemmiae</i> (Hymenoptera: Pteromalidae), a parasitoid of spotted-wing drosophila (<i>Drosophila suzukii</i>) by Cherre S. Bezerra Da Silva (7026926)

    Published 2019
    “…Based on survival and host-killing capacity, we conclude that <i>P</i>. <i>vindemmiae</i> has a tremendous biocontrol potential against SWD. …”
  20. 320