Search alternatives:
teer decrease » greater decrease (Expand Search)
0 decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
teer decrease » greater decrease (Expand Search)
0 decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1381
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
1382
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
1383
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
1384
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
1385
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
1386
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
1387
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
1388
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
1389
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
1390
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
1391
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
1392
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
Published 2025“…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. …”
-
1393
Still reduced cardiovascular mortality 12 years after supplementation with selenium and coenzyme Q10 for four years: A validation of previous 10-year follow-up results of a prospec...
Published 2018“…A multivariate Cox regression analysis demonstrated a reduced CV mortality risk in the active treatment group (HR: 0.59; 95%CI 0.42–0.81; P = 0.001). …”
-
1394
Proteomic Analysis of the Murine Liver in Response to a Combined Exposure to Psychological Stress and 7,12-Dimethylbenz(a)anthracene
Published 2010“…The proteomic results further indicate that exposure to DMBA induces increases in the abundance of CYP1A2 and serine protease inhibitors and decreases the abundance of CYP4 V3. …”
-
1395
Proteomic Analysis of the Murine Liver in Response to a Combined Exposure to Psychological Stress and 7,12-Dimethylbenz(a)anthracene
Published 2010“…The proteomic results further indicate that exposure to DMBA induces increases in the abundance of CYP1A2 and serine protease inhibitors and decreases the abundance of CYP4 V3. …”
-
1396
Proteomic Analysis of the Murine Liver in Response to a Combined Exposure to Psychological Stress and 7,12-Dimethylbenz(a)anthracene
Published 2010“…The proteomic results further indicate that exposure to DMBA induces increases in the abundance of CYP1A2 and serine protease inhibitors and decreases the abundance of CYP4 V3. …”
-
1397
A comparison of the Muenster, SIOP Boston, Brock, Chang and CTCAEv4.03 ototoxicity grading scales applied to 3,799 audiograms of childhood cancer patients treated with platinum-bas...
Published 2019“…Overall concordance between the scales ranged from ĸ = 0.636 (Muenster vs. Chang) to ĸ = 0.975 (Brock vs. …”
-
1398
-
1399
-
1400