Search alternatives:
nn decrease » a decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
nm decrease » a decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
_ decrease » _ decreased (Expand Search)
w decrease » we decrease (Expand Search), a decrease (Expand Search), _ decreased (Expand Search)
10 nm » 100 nm (Expand Search), 10 mm (Expand Search)
5 w » 5 wt (Expand Search)
nn decrease » a decrease (Expand Search), mean decrease (Expand Search), gy decreased (Expand Search)
nm decrease » a decrease (Expand Search), we decrease (Expand Search), gy decreased (Expand Search)
_ decrease » _ decreased (Expand Search)
w decrease » we decrease (Expand Search), a decrease (Expand Search), _ decreased (Expand Search)
10 nm » 100 nm (Expand Search), 10 mm (Expand Search)
5 w » 5 wt (Expand Search)
-
1
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
TUDCA decreases ER stress in HOX neonatal rat lungs.
Published 2022“…<p>(<b>A</b>) The expression levels of ER stress markers (P-PERK 0.6±0.1-fold, p<0.001, n = 5; PERK 0.7±0.1-fold, p = 0.00364, n = 5; P-IRE1α 0.6±0.0-fold, p<0.001, n = 5; IRE1α 0.6±0.1-fold, p<0.001, n = 5; GRP78 0.8±0.1-fold, p<0.001, n = 5; cleaved ATF6 0.1±0.0-fold, p<0.001, n = 5; spliced XBP1 0.3±0.0-fold, p<0.001, n = 5; 2 males and 3 females) are all decreased while the N-glycosylated VEGFR2 is increased (3.5±0.2-fold, p<0.001, n = 5) in HOX neonatal lungs at P10 indicating TUDCA can attenuate hyperoxia-induced ER stress. …”
-
10
-
11
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
12
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
13
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
14
Evidence of Formation of 1–10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries
Published 2023“…However, the single-walled INTs reported in the literature all possess subnanometer diameters (<1 nm). Herein, based on systematic and large-scale molecular dynamics simulations, we demonstrate the spontaneous freezing transition of liquid water to single-walled INTs with diameters reaching ∼10 nm when confined to capillaries of double-walled carbon nanotubes (DW-CNTs). …”
-
15
-
16
-
17
-
18
-
19
-
20