Search alternatives:
largest decrease » marked decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
largest decrease » marked decrease (Expand Search)
larger decrease » marked decrease (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
-
1
-
2
Biases in larger populations.
Published 2025“…<p>(<b>A</b>) Maximum absolute bias vs the number of neurons in the population for the Bayesian decoder. Bias decreases with increasing neurons in the population. …”
-
3
-
4
The effect of HA digestion and HA replenishment alone or with CS on barrier function measured by TEER.
Published 2025“…<p>(A) A steady increase in TEER is seen in differentiated porcine urothelial cells, corresponding with a tight epithelium and reaching the upper reliable limit of the equipment (3300 Ω cm<sup>2</sup>) around day 35. …”
-
5
-
6
BA attenuated the decrease in the integrity and increase in the permeability of the epithelial barrier injury induced by LPS in Caco2 cell monolayers.
Published 2024“…<p>(<b>A)</b> Changes in TEER with increasing culture time on days 1–22. …”
-
7
Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
8
Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
9
Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
10
Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
11
Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
12
Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
13
-
14
-
15
-
16
-
17
-
18
Flow diagram representing bromeliad death by overcrowding within the Bromeliad-death procedure.
Published 2025Subjects: -
19
-
20