Search alternatives:
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
linear decrease » linear increase (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
greatest decrease » treatment decreased (Expand Search), greater increase (Expand Search)
linear decrease » linear increase (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
-
1
-
2
Differentially expressed genes (DEGs)<sup>a</sup> showing the greatest fold changes from each potato tissue: 10 with greatest increase in expression and 10 with greatest decrease in expression.
Published 2025“…<p>Differentially expressed genes (DEGs)<sup>a</sup> showing the greatest fold changes from each potato tissue: 10 with greatest increase in expression and 10 with greatest decrease in expression.…”
-
3
-
4
-
5
Inhibition of NEAT1 decreased the miR-204-5p expression and increased Six1 expression.
Published 2024“…<p>(A) NEAT1 expression following siRNA transfection in BEAS-2B cells; (B-D) The expression of NEAT1, miR-204-5p, and Six1 after decreasing NEAT1 expression. * p <0.05, *** p < 0.001, and **** p <0.0001.…”
-
6
-
7
-
8
-
9
The effect of HA digestion and HA replenishment alone or with CS on barrier function measured by TEER.
Published 2025“…<p>(A) A steady increase in TEER is seen in differentiated porcine urothelial cells, corresponding with a tight epithelium and reaching the upper reliable limit of the equipment (3300 Ω cm<sup>2</sup>) around day 35. …”
-
10
-
11
-
12
BA attenuated the decrease in the integrity and increase in the permeability of the epithelial barrier injury induced by LPS in Caco2 cell monolayers.
Published 2024“…<p>(<b>A)</b> Changes in TEER with increasing culture time on days 1–22. …”
-
13
-
14
Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
15
Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
16
Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
17
Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
18
Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
19
Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
20
Y-27632 collaborated with BA to attenuate the increase in the integrity and decrease in the permeability of epithelial barrier injury induced by LPS in Caco2 monolayers.
Published 2024“…<p>(<b>A)</b> Y-27632 collaborated with BA to attenuate the effect of LPS on TEER in Caco2 cells on days 1–22. …”