Showing 1 - 20 results of 2,138 for search '(( _ latent decrease ) OR ((( via ((teer decrease) OR (we decrease)) ) OR ( _ largest decrease ))))', query time: 0.47s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Posterior distribution of the effect of the latent variable on the probability of seeking traditional remedies after a potential dog bite indicates a decreased likelihood of individuals seeking traditional remedies. by Philip P. Mshelbwala (11278898)

    Published 2025
    “…<p>Posterior distribution of the effect of the latent variable on the probability of seeking traditional remedies after a potential dog bite indicates a decreased likelihood of individuals seeking traditional remedies.…”
  8. 8
  9. 9
  10. 10
  11. 11

    Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  12. 12

    Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  13. 13

    Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  14. 14

    Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  15. 15

    Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  16. 16

    Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf by Francesca Bietto (21511316)

    Published 2025
    “…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
  17. 17

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  18. 18

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  19. 19

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
  20. 20

    Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations by Pengxiang Si (5676260)

    Published 2024
    “…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”