Search alternatives:
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
latest decrease » greatest decrease (Expand Search), largest decreases (Expand Search), latency decreased (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
_ largest » _ large (Expand Search)
largest decrease » larger decrease (Expand Search), marked decrease (Expand Search)
latest decrease » greatest decrease (Expand Search), largest decreases (Expand Search), latency decreased (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
_ largest » _ large (Expand Search)
-
1
-
2
-
3
-
4
Image 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
5
Table 1_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.docx
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
6
Image 5_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
7
Image 4_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
8
Image 2_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
9
Image 3_Using sodium glycodeoxycholate to develop a temporary infant-like gut barrier model, in vitro.pdf
Published 2025“…</p>Results<p>Our research demonstrates that GDC decreases Caco-2/HT29-MTX Trans-Epithelial Electrical Resistance (TEER) and increases paracellular permeability, without inflammation or cytotoxicity. …”
-
10
Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations
Published 2024“…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
-
11
Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations
Published 2024“…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
-
12
Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations
Published 2024“…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
-
13
Room-Temperature Self-Healable Glassy Semicrystalline Polymers via Ionic Aggregations
Published 2024“…Semicrystalline polymers constitute the largest fraction of industrial and engineering plastics but are difficult to automatically self-heal in their glassy state due to the frozen molecular chains. …”
-
14
-
15
-
16
-
17
-
18
-
19
-
20
Distribution of individual change in trust in science before and after the pandemic (n = 10,000).
Published 2025Subjects: