Showing 2,101 - 2,120 results of 19,010 for search '(( a ((((laser decrease) OR (linear decrease))) OR (larger decrease)) ) OR ( a largest decrease ))', query time: 0.73s Refine Results
  1. 2101

    Ultrahigh Subcooling Dropwise Condensation Heat Transfer on Slippery Liquid-like Monolayer Grafted Surfaces by Ting-en Huang (19700357)

    Published 2024
    “…The experimental heat transfer performance is further compared to the theoretical heat transfer via the individual droplets with the droplet distribution elucidated via both macroscopic observations as well as environmental scanning electron microscopy. Finally, only a mild decrease in the heat transfer coefficient of 20.3% after 100 h of condensation test at <i>T</i><sub>sub</sub> of 60 K is reported. …”
  2. 2102
  3. 2103
  4. 2104

    Equivalent effect model. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  5. 2105

    Simulation model. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  6. 2106

    Displacement of soil particles in z direction. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  7. 2107

    Simulation parameters [13]. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  8. 2108

    Displacement of soil particles in x direction. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  9. 2109

    Soil particle simulation model. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  10. 2110

    Multi-factor experimental results. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  11. 2111

    Frequency-displacement curve. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  12. 2112

    Bonding bonds between soil particles. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  13. 2113

    Test factor coding. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  14. 2114

    Displacement of soil particles in y direction. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  15. 2115

    Frame structure and key dimensions. by Xueting Ma (390540)

    Published 2025
    “…The number of soil disturbance particles decreases with an increase in forward speed, increases with a larger radius of the convex structure, and slightly decreases with an increase in the lugs angle. …”
  16. 2116
  17. 2117

    Data_Sheet_1_Empiric Methods to Account for Pre-analytical Variability in Digital Histopathology in Frontotemporal Lobar Degeneration.docx by Lucia A. A. Giannini (6906953)

    Published 2019
    “…Using a train-test set design, we examined transformation prerequisites (i.e., Rsq) from linear-modeling in training sets, and we applied equivalence factors (i.e., beta, intercept) to independent testing sets to determine transformation outcomes (i.e., intraclass correlation coefficient [ICC]). …”
  18. 2118

    Phenology and Seed Yield Performance of Determinate Soybean Cultivars Grown at Elevated Temperatures in a Temperate Region by Doug-Hwan Choi (3330894)

    Published 2016
    “…Heat stress conditions induced a decrease in pod number to a greater degree than in seed number per pod. …”
  19. 2119

    Direct Visualization of Photomorphic Reaction Dynamics of Plasmonic Nanoparticles in Liquid by Four-Dimensional Electron Microscopy by Xuewen Fu (1818580)

    Published 2018
    “…The photoinduced agglomeration, coalescence, and fusion dynamics of AuNPs at different temperatures are studied. At low laser fluences, the AuNPs show a continuous aggregation in several seconds, and the aggregate size decreases with increasing fluence. …”
  20. 2120

    Direct Visualization of Photomorphic Reaction Dynamics of Plasmonic Nanoparticles in Liquid by Four-Dimensional Electron Microscopy by Xuewen Fu (1818580)

    Published 2018
    “…The photoinduced agglomeration, coalescence, and fusion dynamics of AuNPs at different temperatures are studied. At low laser fluences, the AuNPs show a continuous aggregation in several seconds, and the aggregate size decreases with increasing fluence. …”