Search alternatives:
linear decrease » linear increase (Expand Search)
laser decrease » larger decrease (Expand Search), water decreases (Expand Search), teer decrease (Expand Search)
large decrease » marked decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
mean decrease » a decrease (Expand Search)
a large » _ large (Expand Search)
linear decrease » linear increase (Expand Search)
laser decrease » larger decrease (Expand Search), water decreases (Expand Search), teer decrease (Expand Search)
large decrease » marked decrease (Expand Search), large increases (Expand Search), large degree (Expand Search)
mean decrease » a decrease (Expand Search)
a large » _ large (Expand Search)
-
361
-
362
-
363
-
364
-
365
Divergent mtDNA genotypes decrease OXPHOS protein levels but do not compromise bioenergetic function.
Published 2020“…Images were acquired using a laser scanning confocal microscope (Nikon A1r) with a 63x/1.40 oil immersion objective. …”
-
366
Association of anemia and hemoglobin decrease during acute stroke treatment with infarct growth and clinical outcome
Published 2018“…Lower hemoglobin at baseline, at 24h, and nadir until day 5 predicted poor outcome (OR 1.150–1.279) and higher mortality (OR 1.131–1.237) independently of treatment. Decrease of hemoglobin after hospital arrival, mainly induced by hemodilution, predicted poor outcome and had a linear association with final infarct volumes and the amount and velocity of infarct growth. …”
-
367
-
368
Means scores of CAM and CAM-MYCS.
Published 2025“…A moderate negative correlation was observed between CAM and CAM-MYCS scores (r = −0.511; p < 0.001), indicating that increased awareness of real causes is associated with decreased belief in myths. …”
-
369
-
370
-
371
-
372
-
373
-
374
-
375
Image_1_Loneliness predicts decreased physical activity in widowed but not married or unmarried individuals.TIF
Published 2024“…In widowed individuals, baseline loneliness was associated with a 0.06 h/week greater decrease in physical activity per year compared to those who were not lonely (p = 0.005, CI -0.1, 0.02)—which equaled a 150% decrease in physical activity per year. …”
-
376
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
377
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
378
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
379
Parrotfish Teeth: Stiff Biominerals Whose Microstructure Makes Them Tough and Abrasion-Resistant To Bite Stony Corals
Published 2017“…To investigate how their teeth endure the associated contact stresses, we examine the chemical composition, nano- and microscale structure, and the mechanical properties of the steephead parrotfish <i>Chlorurus microrhinos</i> tooth. Its enameloid is a fluorapatite (Ca<sub>5</sub>(PO<sub>4</sub>)<sub>3</sub>F) biomineral with outstanding mechanical characteristics: the mean elastic modulus is 124 GPa, and the mean hardness near the biting surface is 7.3 GPa, making this one of the stiffest and hardest biominerals measured; the mean indentation yield strength is above 6 GPa, and the mean fracture toughness is ∼2.5 MPa·m<sup>1/2</sup>, relatively high for a highly mineralized material. …”
-
380