Showing 10,301 - 10,320 results of 61,004 for search '(( a ((((laser decrease) OR (mean decrease))) OR (linear decrease)) ) OR ( a large decrease ))', query time: 1.04s Refine Results
  1. 10301

    Loading rate—Failure stress relation diagram. by Dongwei Li (1538815)

    Published 2024
    “…The final cumulative strain remains below 1%. 2) The failure stress of subgrade soil decreases exponentially with an increase in freeze-thaw cycles, dropping from 224.52 kPa to 196.76 kPa. 3) An increase in water content linearly decreases the failure stress of subgrade soil, ranging from 377.1 kPa to 151.5 kPa. 4) Confining pressure exhibits a linearly increasing relationship with the failure stress of subgrade soil, ranging from 151.6 kPa to 274.5 kPa. 5) The failure stress of subgrade soil demonstrates a linear increase with the loading rate, ranging from 200.46 kPa to 210.62 kPa. …”
  2. 10302

    Specimen preparation proced. by Dongwei Li (1538815)

    Published 2024
    “…The final cumulative strain remains below 1%. 2) The failure stress of subgrade soil decreases exponentially with an increase in freeze-thaw cycles, dropping from 224.52 kPa to 196.76 kPa. 3) An increase in water content linearly decreases the failure stress of subgrade soil, ranging from 377.1 kPa to 151.5 kPa. 4) Confining pressure exhibits a linearly increasing relationship with the failure stress of subgrade soil, ranging from 151.6 kPa to 274.5 kPa. 5) The failure stress of subgrade soil demonstrates a linear increase with the loading rate, ranging from 200.46 kPa to 210.62 kPa. …”
  3. 10303

    Water content—Failure stress relation diagram. by Dongwei Li (1538815)

    Published 2024
    “…The final cumulative strain remains below 1%. 2) The failure stress of subgrade soil decreases exponentially with an increase in freeze-thaw cycles, dropping from 224.52 kPa to 196.76 kPa. 3) An increase in water content linearly decreases the failure stress of subgrade soil, ranging from 377.1 kPa to 151.5 kPa. 4) Confining pressure exhibits a linearly increasing relationship with the failure stress of subgrade soil, ranging from 151.6 kPa to 274.5 kPa. 5) The failure stress of subgrade soil demonstrates a linear increase with the loading rate, ranging from 200.46 kPa to 210.62 kPa. …”
  4. 10304

    The molar envelope. by Dongwei Li (1538815)

    Published 2024
    “…The final cumulative strain remains below 1%. 2) The failure stress of subgrade soil decreases exponentially with an increase in freeze-thaw cycles, dropping from 224.52 kPa to 196.76 kPa. 3) An increase in water content linearly decreases the failure stress of subgrade soil, ranging from 377.1 kPa to 151.5 kPa. 4) Confining pressure exhibits a linearly increasing relationship with the failure stress of subgrade soil, ranging from 151.6 kPa to 274.5 kPa. 5) The failure stress of subgrade soil demonstrates a linear increase with the loading rate, ranging from 200.46 kPa to 210.62 kPa. …”
  5. 10305

    Influence of water content on accumulated strain. by Dongwei Li (1538815)

    Published 2024
    “…The final cumulative strain remains below 1%. 2) The failure stress of subgrade soil decreases exponentially with an increase in freeze-thaw cycles, dropping from 224.52 kPa to 196.76 kPa. 3) An increase in water content linearly decreases the failure stress of subgrade soil, ranging from 377.1 kPa to 151.5 kPa. 4) Confining pressure exhibits a linearly increasing relationship with the failure stress of subgrade soil, ranging from 151.6 kPa to 274.5 kPa. 5) The failure stress of subgrade soil demonstrates a linear increase with the loading rate, ranging from 200.46 kPa to 210.62 kPa. …”
  6. 10306

    S1 Table - by Dongwei Li (1538815)

    Published 2024
    “…The final cumulative strain remains below 1%. 2) The failure stress of subgrade soil decreases exponentially with an increase in freeze-thaw cycles, dropping from 224.52 kPa to 196.76 kPa. 3) An increase in water content linearly decreases the failure stress of subgrade soil, ranging from 377.1 kPa to 151.5 kPa. 4) Confining pressure exhibits a linearly increasing relationship with the failure stress of subgrade soil, ranging from 151.6 kPa to 274.5 kPa. 5) The failure stress of subgrade soil demonstrates a linear increase with the loading rate, ranging from 200.46 kPa to 210.62 kPa. …”
  7. 10307

    The loading program schematic diagram. by Dongwei Li (1538815)

    Published 2024
    “…The final cumulative strain remains below 1%. 2) The failure stress of subgrade soil decreases exponentially with an increase in freeze-thaw cycles, dropping from 224.52 kPa to 196.76 kPa. 3) An increase in water content linearly decreases the failure stress of subgrade soil, ranging from 377.1 kPa to 151.5 kPa. 4) Confining pressure exhibits a linearly increasing relationship with the failure stress of subgrade soil, ranging from 151.6 kPa to 274.5 kPa. 5) The failure stress of subgrade soil demonstrates a linear increase with the loading rate, ranging from 200.46 kPa to 210.62 kPa. …”
  8. 10308

    Dynamic triaxial test conditions. by Dongwei Li (1538815)

    Published 2024
    “…The final cumulative strain remains below 1%. 2) The failure stress of subgrade soil decreases exponentially with an increase in freeze-thaw cycles, dropping from 224.52 kPa to 196.76 kPa. 3) An increase in water content linearly decreases the failure stress of subgrade soil, ranging from 377.1 kPa to 151.5 kPa. 4) Confining pressure exhibits a linearly increasing relationship with the failure stress of subgrade soil, ranging from 151.6 kPa to 274.5 kPa. 5) The failure stress of subgrade soil demonstrates a linear increase with the loading rate, ranging from 200.46 kPa to 210.62 kPa. …”
  9. 10309

    Test apparatus. by Dongwei Li (1538815)

    Published 2024
    “…The final cumulative strain remains below 1%. 2) The failure stress of subgrade soil decreases exponentially with an increase in freeze-thaw cycles, dropping from 224.52 kPa to 196.76 kPa. 3) An increase in water content linearly decreases the failure stress of subgrade soil, ranging from 377.1 kPa to 151.5 kPa. 4) Confining pressure exhibits a linearly increasing relationship with the failure stress of subgrade soil, ranging from 151.6 kPa to 274.5 kPa. 5) The failure stress of subgrade soil demonstrates a linear increase with the loading rate, ranging from 200.46 kPa to 210.62 kPa. …”
  10. 10310
  11. 10311
  12. 10312
  13. 10313
  14. 10314
  15. 10315
  16. 10316
  17. 10317

    Fig 7 - by Jie He (132999)

    Published 2024
  18. 10318
  19. 10319
  20. 10320